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Abstract

A detailed mathematical model is presented for the analys multibit quantizing
systems. Dithering is examined as a means for eliminatinggaal-dependent quanti-
zation errors, and subtractive and non-subtractive dithexd systems are thoroughly
explored within the established theoretical framework. Oprimary interest are the
statistical interdependences of signals in dithered systs and the spectral proper-

ties of the total error produced by such systems.

Regarding dithered systems, many topics of practical intest are explored.
These include the use of spectrally shaped dithers, dither hoise-shaping systems,
the e cient generation of multi-channel dithers, and the u®s of discrete-valued

dither signals.
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Chapter 1

Introduction: Quantization

Dither and quantization are among the most frequently discgsed topics in audio
and other elds of signal processing. Dithering techniqueare now commonplace
in applications where it is necessary to reduce the precisi@f data prior to stor-
age or transmission. In spite of widespread interest in didn and quantization, a
comprehensive theory of their operation did not exist in prit prior to the author's
published investigations in this area, although certain usubstantiated results could
be found scattered among sundry journals. This thesis attgsts to collect all of the
signi cant known theory, to substantially extend it, and to provide rigorous justi -
cation for the various \rules of thumb" which have been adomd by the engineering

community.

The author's interest in dithered quantization arose with a eye to its use in
audio signal processing. Undithered quantization can prode audibly deleterious
distortion and noise modulation in audio signals, indicatig that the mean and

variance of the quantization error signal are signal depeadt. It will be seen
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that the use of dither can eliminate such input dependencegielding an audibly
preferable error signal which is perceptually equivalentot a signal-independent
random noise. Similar results are useful for grey-scale aoleur quantization of
images, in which at least the rst two (and possibly the third quantization error
moments are perceptually meaningful and should be rendersiynal independent.
Data conversion and measurement instruments such as specir analyzers can also
make pro table use of dithering when the statistical attributes of input signals need

to be precisely deduced from quantized measurements.

1.1 Quantizers and Quantizing Systems

Analogue-to-digital conversion is customarily decompodento two separate pro-
cessestime sampling of the input analogue waveform andamplitude quantization
of the signal values in order that the samples may be represed by binary words
of a prescribed length. The order of these two processes ignaterial in theory,
although in practice quantization is usually second. The sapling operation incurs
no loss of information as long as the input is bandlimited in@&ordance with the
Sampling Theorem [1], but the approximating nature of the gantization operation
alwaysresults in signal degradation. An operation with a similar pblem isrequan-
tization, in which the wordlength of digital data is reduced after proessing in order
to meet speci cations for its storage or transmission. An dpnal (re)quantizer is
one which minimizes the deleterious e ects of the aforemeohed signal degrada-
tion by converting the signal-dependent artifacts into beign signal-independent

ones as far as possible.

Quantization and requantization possess similar \staircge" transfer character-
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Qw) Qw) ||
JJJD
W /,—/_,7 W

(@) (b)

Figure 1.1. Quantizer transfer characteristics: (a) mid-tread, (b) mid-riser.
The size of one LSB is denoted by .

istics, which are generally of either themid-tread or mid-riser variety illustrated in
Fig. 1.1. We will only consider quantizers which are botluniform, meaning that
all steps in the staircase are of an equal time-invariant gz andin nite, which, for
practical purposes, means that the input signal is boundedush that it is never
clipped by saturation of the quantizer. The step size, , is commonlyreferred to as
a least signi cant bit (LSB), since a change in input signal level of one step width

corresponds to a change in the LSB of binary-coded output.

Quantization or requantization introduces into the digitd data stream an error
signal, g, which is simply the di erence between the output of the quatizer, Q(w),

and its input, w:

qw) 2 Qw) w; (1.1)

where we use the symb(ﬁ: to indicate equality by de nition. This quantization
error is shown as a function ofwv for a mid-tread quantizer in Fig. 1.2. It has a

maximum magnitude of 0.5 LSB and is periodic inv with a period of 1 LSB.

We will refer to systems which restrict the accuracy of samelvalues using
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a(w)
[LSB]

-0.5

—1‘.0 1‘.0 W
[LSB]

Figure 1.2: Quantization error, g(w), as a function of quantizer input, w, for
a mid-tread quantizer.

multi-bit quantization as quantizing systemsof which there exist three archetypes:
undithered (UD), subtractively dithered (SD)and non-subtractively dithered (NSD)

Schematics of these systems are shown in Fig. 1.3.

Throughout the sequel, we will refer to thesystem inputasx, the system output

asy, and the total error of the system as' where

as distinguished from the quantization error,g, de ned by Eq. (1.1). In an un-
dithered quantizing system, the system inputy, is identical to the quantizer input,
w, so that the total error equals the quantization error; i.e.” = ¢. In the other
two schemes, the quantizer input is comprised of the systemput plus an additive
random signal, , calleddither, which is assumed to be stationarfyand statistically
independent ofx. In such systems the quantizer inputw = x + , is not a deter-

ministic function of x and neither is the total error,”. In the subtractively dithered

LA stationary random process is one whose statistical propéies are time-invariant. Such
notions from probability and statistics, which are crucial to the analysis of dithered systems, will

be systematically introduced in Chapter 2.
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I
I
I
input | quantizer |!! _ output
x w=x [ © i y=0Q)
Ll =x+q(x)
Ll =x+e
(&) undithered ]
I
I
I
I
I
dither, n -
I
. + I
Input ‘/é\ | quantizer | output
X + \2/ w=x+n Q I+ y =Q(w) -n
: : =X + q(x+n)
(b) subtractively I =xte
dithered : :
I
I
dither, n : :
N I
input quantizer | ' _output
X + W=X+n Q I y = Q(w)
I =X +n + q(x+n)
I =x+e
(¢) non-subtractively N
dithered channel

Figure 1.3: Archetypal quantizing systems: (a) undithered (UD), (b) sub-
tractively dithered (SD), (c) non-subtractively dithered (NSD). Shown are

the system input, x, the dither signal,

system output, y.

, the quantizer input, w, and the
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topology, the dither signal is subtracted from the quantize output, presumably
after this output has been transmitted through some channel This subtraction

operation is omitted in a non-subtractively dithered syste.

The objective of dithering is to control the statistical prgerties of the total
error and its relationship to the system input. In undithera systems, we know
that the error is a deterministic function of the input. If the input is simple and/or
comparable in magnitude to the quantization step size, theotal error signal is
strongly input-dependent and audible as gross distortionWe shall see that use of
dither with proper statistical properties can render the t¢al error signal audibly

equivalent to a steady noise oor.

1.2 A Brief History of Quantization Theory

Although citations will occur at appropriate points throughout the text, the for-
mulation will be of a very general sort so that results will nbappear in the order
in which they were discovered. Hence a concise history of tmetical develop-
ments concerning quantization and dither is presented belao provide a contextual

framework for the ensuing discussion.

It must be acknowledged that all mathematical treatments ofuantization owe a
substantial debt to the work of Widrow [2, 3, 4], who develogkemany of the essential
mathematical tools while studying undithered quantizing gstems. It was Widrow
who rst demonstrated the usefulness of characteristic fugtions in analyzing such

systems.

Interest in SD systems arose long before that in non-subtriae schemes. The
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original proponent of subtractive dither was Roberts [5], wo experimented with it
in video applications. It was later adapted for use in speeavoding, where the rst

psychoacoustic evaluations of dithered systems were untiden [6].

The unidimensional statistics of SD systems were rst expted by Schuch-
man [7], who published conditions on the dither which wouldnsure uniform dis-
tribution of the error signal and its statistical independace of the system input. A
more detailed analysis was undertaken by Sripad and Snyddé],[ whose work was
in turn extended with corrections by Sherwood [9]. Sherwotsdpaper represents
a comprehensive treatment of SD systems (short of discusginoise-shaping error

feedback, a technique not yet popular at the time of its writig).

SD systems have resisted widespread implementation due toetrequirement
that the dither sequence be available for subtraction at pldoack time, necessitat-
ing the storage/transmission of either the sequence itsaf enough information to
reliably reconstruct it. NSD systems, which avoid this drawack, were rst investi-
gated by Wright [10], but his ndings were not published untl recently [11]. Many
of the principal results concerning moments of the error sigl were discovered inde-
pendently by Stockham and Brinton [12, 13], but again nothig was published until
lately [14]. Vanderkooy and Lipshitz [15, 16, 17, 18, 19] weethe rst to make public
the primary results regarding NSD systems, and published ¢hrst thoroughgoing
mathematical treatments with the author [20, 21, 22, 11, 224, 25, 26, 27]. These
included the rst explorations of the higher-order statisics, including power spec-
tral densities, in such systems, as well as the rst analysed dithered systems with

noise-shaping error feedback.

A thorough treatment of the rst-order statistics of NSD sygems (again short

of addressing noise shaping) which uses a di erent approattas recently been
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published by Stockham and Gray [14].

Although a handful of individuals in the engineering commuity are aware of
certain results regarding dither, a number of misconceptis concerning the tech-
nique are widespread. In particular, the properties of SD @anNSD quantizing
systems are often confused. One objective of this thesis & grovide a consistent
and rigorous account of the theory of dithered systems in oedto promote a more

universal understanding of dithering techniques.

The next chapter provides an overview of the mathematical s to be used in
the analysis of quantizing systems. Chapter 3 presents a shbut intense develop-
ment of the crucial theory underlying dithered quantizing gstems, using a general
approach with UD, SD, and NSD systems as special cases. Clapt examines the
distinctive characteristics of each of these systems in @tand makes recommen-
dations for their implementation in speci c applications. Chapter 5 examines the
related topics of spectrally-shaped dither signals, ditlén noise-shaping converters,
and the e cient generation of multi-channel dither signals Chapter 6 extends the
theory to cover systems using discrete-valued (i.e., digi) dither signals. Chap-
ter 7 makes some closing comments. Appendix A provides a Wraiscussion of
generalized functions. Issues involving real-time estirman of statistical quantities

in dithered quantizing systems are discussed in Appendix B.



Chapter 2

Mathematical Background

This chapter presents a brief introduction to the mathematal devices which will be
used later, including stochastic processes and characgtic functions. The reader
is assumed to be familiar with Fourier analysis ok, (i.e., absolutely integrable)
functions. The de nition of the Fourier transform maintained throughout the sequel
is
Z 1

FIf](u) = . f(x)e 129 dx: (2.1)
In some cases, ordinary functions will not suit our purposesnd we will need to
resort to tempered generalized functiongThese are sometimes callegmpered dis-
tributions or Schwartz distributions but in the body of the thesis we will eschew
this usage in order to avoid confusion with the distinct notin of probability dis-
tributions.) In particular we will make frequent use of the Drac delta function.
Readers who are unfamiliar with the theory of generalized figtions, but who have
some working familiarity with delta functions, may proceedwithout trepidation.

When references to such theory appear, they may be skippedthvaut losing the

9
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ow of the argument. Interested readers may consult AppengiA, which provides
an outline of the theory and resolves certain mathematicaksues associated with

the generalized functions appearing in this thesis.

2.1 Stochastic Processes

Much confusion concerning dither and quantization arisesdm an unclear or incom-
plete understanding of the terms in the discussion. With tls in mind, a succinct
de nition of the basic quantities to be discussed is in order The discussion of
probability will use Kolmogorov's axiomatics, as outlinedbelow. For more details,

the interested reader may consult [28].

Consider a random experiment withoutcomes 2 S, and a family B of subsets
of S such that

1.;2B andS 2B,

2.A2B) S A2B,

3. fA.gl, B) A, 2 B:

We assume that a probability measurd® is de ned on B; i.e., a real, nhonnegative

set function P such that

1. P(S) =1,
2. If the setsA1; Ay;::: in B are mutually disjoint then
|

' *
P A, = P(An):
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The triple (S;B;P) is called a probability space.
A (real) random variable x, is any mapping
x:S! R

such thatf 2 Sjx( ) < g2 B forany 2 R. With a random variable x one

associates a functior, : R! R de ned by
Fx()=P({ 2Sjx()< o9)

This function is called thecumulative distribution function (cdf) of x. We observe

that F,( ) is non-decreasing and that

im F()=P()=0; lim F()=P(S)=1:

When the cdf is everywhere di erentiable, its derivative isalled the probability

density function (pdf) and is denoted bypy:

dF,
dx

pc(x) = ——=(X):

Unfortunately, the cdf is often not di erentiable everywhee. It is, however, locally
integrable, and thus de nes a generalized function (see Appdix A). Since the
derivative of a generalized function is always well-de nedhe pdf always exists as
a generalized function. It can be shown, furthermore [29]hat this distribution is
de ned by

Z 1

h;pyi = (x)dF(x) 8 2S
1

where S is a space ofest functions Thus we may either treat pdf's as generalized

functions, or eliminate them in favour of Stieltjes integrés.

The following theorem provides a useful characterizationf @df's [28]:
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Theorem 2.1 (Lebesgue's Decomposition Theorem) A cdf F (x) can be writ-
ten as

F(x)= 1Fa(x)+ 2Fc(X)+ 3Fs(x)

where 1, , and 3 are nonnegative real numbers such that
1+ 2+ 3=1

and F4(x), Fc(x) and Fs(x) are, respectively, a purely discontinuous cdf, an abso-

lutely continuous cdf, and a singular cdf.

The singular function F¢(x) is a continuous function whose derivative is zero almost
everywhere (in Lebesgue measure) and which is not a constaBuch functions do
not occur in practice and we will make the common assumptiomat 3 = O for the
random quantities under consideration in the sequel. The figtion F.(x) possesses
a density corresponding to an ordinary function. The purelgiscontinuous function
Fq(X) is constant except on at most a countable set of discontirties. Thus Fy(X)
represents a countable sum of step functions so that the cesponding density is a

countable sum of Dirac delta functions (see Appendix A).

We may also speak of thgoint cdf, of a pair of random variablesx andy, as

Fxy( i y) = P(E 2Sx() < x"y( )< yo):

The correspondingjoint pdf is

@Fx;y
@x@

where the derivatives are always meaningful in the sense angralized functions.

Py (X1 Y) = X;Y)

Corresponding de nitions are possible in the case of moreah two random vari-

ables.



CHAPTER 2. MATHEMATICAL BACKGROUND 13

We say that two random variablesx and y are statistically independentif it is

possible to write
Fuy (y) = Fx(X)Fy(Y)
or, equivalently,

Py (5 Y) = px(X)py(Y):

The marginal cdf's, F, and F, are recoverable fronf,., as limits at in nity; for

instance

Fx(x) = P 2Sjx()< x9)
P 2Six()< x"y()<1g9)

”,T Fry( x5 y)
!

or, equivalently, .
1

Px(X) = . Py (X; y)dy:
Also of interest areconditional pdf's (cpdf's). Any function py;, such that

Py (X Y) = Pujy (X Y)Ry(Y)

is referred to as aversion of the conditional pdf.Clearly x and y are statistically
independent if and only if pyy(X;y) = p«(x). We also observe that ifp,(y) =

(Y Vo). Yo2 R, then
Z 1
Py (X y)dy
Zl
1
Piy(X;y) (Y  Yo)dy

Px (X)

Py (X; Yo):

Thus pyjy(X; Yo) may be interpreted as the pdf ofx given that y assumes a value

Yo 2 R [30]. Note that if p, in no way depends on the choice @, then p,;,(x;y) is
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a function of x alone so thatx andy are statistically independent no matter howy
is distributed. Thus the requirement that the pdf ofx be una ected by the choice
of pdf for y ensures that these random variables are statistically ingendent for

any choice ofpy.

Now consider a probability space §;B;P) and any setT, called aparameter
set A collection fx( ;t);t 2 Tg of random variables onS is called astochasticor
random process Usually we will simply refer to this random process as and we
will use the termssignal and random process interchangeably. For our purposeés
represents a time parameter so thal is either R or Z, in which case a random
process represents a family of time functions (continuous discrete, respectively),
one for each 2 S. Individually these are usually calledsample functionsand
may correspond, for instance, to data records from single mimental trials. For
a speci c time value, t;, the expressionx( ;t;) represents a quantity dependent on

(i.e., a random variable), which we will sometimes denote by for convenience.

We de ne the pdf p(x;t) of a random process so that py(x;t;) is the pdf of
the random variablex( ;t;). We can also form thejoint pdf py,.x,(X1; X2; t1;t2) Of
the random variablesx; and x, wheret; t, 6 0. The explicit time dependence of

these quantities will often be omitted where it may be undetsod from the context.

A random processx is said to be( rst-order) stationary in the strict sense if

its pdf is independent of time; i.e., if

p(X;t) = pe(X;t+ ) 8 2T:

Pxiixo (X1; X2 115 12) = Py, (X1 Xosta + 5t + ) 8 2T

whenevert, 6 t, then the process is said to beecond-order stationary in the
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strict sense. If all of the random variablesx; and x; are identically distributed and
statistically independent of one another when 6 j, then the random process is

said to beiid (independent and identically distributed).

Given py, various statistical attributes of the stochastic processan be cal-
culated, including expected valueof functions of x, where the expectation value

operator is de ned by

z z
E[f (x)](t)é 11 f (w)dF4(w;t) = 11 f (w)px(w;t)dw:

This de nition extends in an obvious fashion to expectatiorvalues of multivariable
functions. For these we observe that the expectation valugerator is linear in the
sense that

Z, 2,

L [f (X) + g(y)]pxy (X; y)dxdy
z 1 z 1

f (X)px(x)dx + . a(y)py(y)dy
E[f )]+ E[g(Y)]:

Ef (x) + a(y)]

When E[jxj¥] exists, thek-th moment of x is de ned as:

z
Ex¥](t) & 11 wWrpy (W t)dw:

The zeroth moment of any random process is identically equid unity; i.e.,
E[x°(t) = E[1](t)=1:

The rst moment is usually referred to as themean of the process. The term
variance refers to the quantity

Eh(X E[X])Zi(t)= ENI(L)  EXX](D);
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so that if the mean of a random process is zero then its variamand second moment
are equal. We emphasize that, in general, these quantitiesamifest an explicit time

dependence, although hereafter it may be omitted unless dxjitly required.
The quantity

h i
E (X1 EXi)(x2 E[x2]) (t1;t2)
z, 7,
=, (X1 EXa)(X2  E[X2])Pxyx, (X1; X2; t1; t2)dX1dXz

is called the autocovariance functionof the random procesx. The joint moment
E [X1X2](t1; t2) is called the autocorrelation function of the random process, so that
if the process has zero mean then its autocovariance and acworelation functions
are equal. If

E[X1X2] = E[X1]E[X2]

then the random variablesx,; and x, are said to beuncorrelated, and if
E[X1X2] =0

then they are said to beorthogonal. If x; and x, are statistically independent then
they are uncorrelated, and if they are also zero mean then thare orthogonal, in

which case

E[(X1 + X2)°] = E[x{] + 2E[X1X2] + E[x5] = E[x{] + E[x3]:

A random process is said to betationary in the wide sensef
E[x](t) = E[x](0);
a constant for allt, and

E [X1X2](t1; tz) = E [X1X2](t1 to; O)
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for any ty;t,. That is, E[x1X;](t1;t,) depends only on the di erence ot; and t,.

In this case we let = t; t, and use the notation

rx( )= E[Xxax2]( ):

A random process is obviously wide-sense stationary if it econd-order strict-
sense stationary, but the converse is not necessarily tru€he power spectral density
(PSD) of a wide-sense stationary random process is de ned as thalFer transform

of its autocorrelation function:

PSDy(u) = F [ry](u):

When considering a random process in a sampled-data systemwill for clarity
write ry(k);k 2 Z instead ofry( ); 2 T. Its PSD may be calculated fromry( )
using delta functions at sampling intervals, or by using theliscrete-time Fourier

transform (DTFT) [31]:

ps .
ForlrxJ(u)=2T r«(k)e J2kTu
k= 1

where T is the sampling period of the system. This de nition is normbzed such

that
Z 4
. Fpor[rx](u)du = ry(0);

which is the variance of the random process. The upper limitf antegration, %
is referred to as theNyquist frequencyof the system and is equal to half of the

sampling frequency.
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2.2 Characteristic Functions

An expectation of particular interest is the so-calleccharacteristic function or cf
of a random variablex:
P(u) = Efe /2]

whereu is a real variable! Thus the cf of a random variable is precisely the Fourier
transform of its pdf. We will denote cf's of random variablesising upper casé’'s,

while reserving lower case's for their pdf's.

We observe that the cf always exists since

Z: Z,
e 12" dF(x) dF(x) = 1:
1

Furthermore we have the following.

Theorem 2.2 The cf's of two random variables are identical if and only ifheir

pdf's are identical.

A proof may be found, for instance, in [28] and is simply a uniggness proof for
Fourier transforms. (Alternatively, viewing the quantities involved as generalized
functions, we may appeal to the unicity results in Appendix A We conclude that

the pdf and cf are equivalent descriptions of a random variéh

The characteristic function is a very useful tool in applickons. The following
theorems indicate some of the reasons why this is so. The riillows directly from

the de nition of the cf.

1Some authors usePy, (u) = E[e2" ]. The choice of de nition is a matter of preference since

the results only di er by a complex conjugation.
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Theorem 2.3 Two random variablesx andy, are statistically independent if and

only if their joint cf can be written as a product:

Pyy (Ux; Uy) = Py (Uyx)Py(uy):

Theorem 2.4 Given two random variable< and vy,

Px(u) = Pyxy(u;0):

Proof :

Z, 2,
E[e 12 (uxtyuy)]

e 12X xdF,, (X;y)

uy=0 1

1 .
= elPdR(Y)

E[e j2xu X]:

Theorem 2.5 If x andy are two random variables, andz = ax + by is a third

wherea; b2 R, then

P2y (Uz; Ux; Uy) = Pyy (U + aug; uy + bu,):
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Proof :
Prxy)(Z;XY) = (z ax by)
SO
Pzxy(Z:Xy) = (zZ ax by)pey (Xy):

This product of generalized functions (see Appendix A) is aomposition of the

tensor product (z)py.y (X;y) with a linear coordinate transformation

23
z
y
where 2 3
1 a
A= éo 1 03:
0O 0 1
The Fourier transform of the tensor product isPx., (uy; uy), det(A) = 1 and
2 3
10
Al= Ea 1
b 01

so by Theorem A.4(viii) we obtain the result.

2
We observe that a trivial generalization is allowed: if randm variables other than

z;x and y appear in the densities, these are una ected; e.g.,

P2acy:w (Uz; Ux; Uy Uy) = Pyyaw (Ux + @Uz; Uy + buy; Uy):
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Corollary 2.1 If x andy are two random variables, andz = ax + by is a third
wherea; b2 R, then

P.(u) = Pxy(au;bu:

Proof : Apply Theorem 2.4 to the result of Theorem 2.5.

If we de ne the convolution of two absolutely integrable functionsf and g by
Z,
[F2gl0=  f(x w)gw)dw
then we also have the following. (This de nition can be extesed to include appro-

priate pairs of generalized functions; see Appendix A.)

Corollary 2.2 If x andy are two statistically independent random variables, and
z = X+ y is a third, then

Pz(u) = Px(u)Py(u)
and

Pz (X) =[x ? B1(X):

Proof : The rst equation follows from the previous corollary and Theorem 2.3.
Taking the Fourier transform of the second equation and intehanging the order

of integration yields the rst.
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Theorem 2.6 If the rst n moments of a random variablex exist, then Py (u) is

n times di erentiable and

E[xX] = 21— kP(")(O) k=1;2:::;n: (2.2)

Proof : Considern = 1. If E[jx|] exists, then

_ Z, _
Elxe 12" ]= e 2 dF (x)

converges uniformly inu. Thus

PO () = j2xe 12" dF(x):
1

In particular,
PYDO)= j2E [x]:

The result for highern follows by iteration of the above procedure.

For our purposes we will consider only signals all of whose ments exist, so
that the theorem holds for anyn. The result is easily extended to yield

H m+n
J

Ex™y"] = Py (0;0);

where we take this opportunity to establish the useful convéion

|
—h
-
i
z
-
)
X
il
X
N
X
Z
~

f(x)
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wherej j= 1+ L+ :::+ . Iisreferred to as anulti-index.

We will now establish some general properties of charactic functions which
will prove useful in the sequel. The following is but the briest of samplings, drawn

from the extensive surveys in [33, 34].

Theorem 2.7 The characteristic function, P(u), of a random variable has the

following properties foru 2 R:
(i) P(u) is a uniformly continuous function ofu;
(i) PO)=1;

(i) jP(wj L

(iv) if there exists ug 6 0 such thatjP (ug)j = 1, then p is a lattice distribution
|

K+ 1
Uo

R
p(x) = G X
k=1
h

where! 2 1;

NI

. If Re P(ug) =1 then! =0.

Proof :

(i)
jP(u) P(uyj = JE[(e? U vaX 1) l2u)
Efje 12 ¢ 2 1j)
0 asju;  uy! O
(ii)

Ele 2 9= E[1]=1:
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(i)
JE[e '?™]i E[e’*™jl=1:

h

(iv) There must exist! 2 1;1 such that P(ug)€?' =1;i.e., such that

E[e 12voX)d2?' = E[1]:
(If Re P(ug) =1 we may take! =0.) Taking real parts, this implies that
E[1 cos(2 (upx !))]=0:

The result follows since 1 cos(2 (upx !)) > O unlessugx ! = k2 Z.

2.3 De nitions Regarding Dithered Quantizing

Systems

Fig. 2.1 shows a quantizing system of a generalized sort, wiSD and NSD systems
representing speci ¢ instances of this generalized one. &kystem inputis denoted
by X, the system outputby y, the quantizer input by w, and the quantizer outputby
wC The signalsq and " represent thequantization error and the total error of the
system, respectively. represents a strict-sense stationarglither process, which is
usually chosen to be statistically independent of although this assumption will not
be made in the sequel except where it is stated explicitly. Ehsignal °can assume

one of two forms depending upon the speci c type of system uedconsideration.
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0

Figure 2.1: Schematic of a generalized dithered quantizingystem.

If © then the system is SD, whereas if® 0 then an NSD system is under

consideration. If 9 0 then the system is undithered.

We assume a uniform in nite quantizer with step size . The caresponding
transfer characteristics can be expressed analytically terms of the input to the
quantizer, w, and the quantizer step size, , as

ow= Y. % (2.3)

for a mid-tread quantizer, or

w

+ (2.4)

w) = —
QW) 5
for a mid-riser quantizer, where the \ oor" operator, b ¢ returns the greatest

integer less than or equal to its argument. These quantizeedways round up at
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step edges; i.e.Q(k + %) =(k+1) forany k 2 Z. We could just as easily
specify quantizers which round down at step edges, stochastic quantizersnvhich
round either up or down at step edges with equal probability. Throughout the
sequel, mid-tread stochastic quantizers will be assumedlass otherwise noted. All
formulas will, however, possess analogues for mid-riseragtizers and all results
stated as theorems are valid for either mid-tread or mid-res types. We will see
that the choice of a stochastic quantizer is the most convesit from a mathematical
point of view, as it permits statistical modelling of the quatizer using certain
products of generalized functions (see Appendix A). When ppopriate, di erences
between stochastic and deterministic quantizers will be skkussed, although these
are usually not signi cant in practice since a dithered analgue signal will reside at

the quantizer step edges with probability zero.

It is opportune to introduce a class of dither signals which gvwill show to have
special useful properties. We begin by de ning ainiformly distributed random

process as one with a pdf of the form

p(x) = (X); (2.5)
where therectangular window functionof width , , Is de ned as
8 1 .
% X< 5
4 1
X)= — iXi= —- 2.6
(x) % > Xi= 5 (2.6)
- 0; otherwise.

The pdf of Eq. (2.5) will be referred to as auniform or RPDF (for Rectangular

Probability Density Function). By direct calculation the moments of a uniformly
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distributed random process' are found to be

E['] = O (2.7)
2
E[*?] = 12 (2.8)
;3 17
— ; for m even,
E['™] m+l 2 (2.9)
-§ 0; for m odd.

The cf of a uniformly distributed process is

sin( u)
P(u=—=:
(W -
This function is commonly referred to as a \sinc" functio, and we will often use

the notation

sinc (u) = M:
u
Now denote byZ) the space of all orderedN -tuples (ki; kz; :: : ; ky ) with integer
components with the exclusion of 0 = (0;:::;0). Thus, in particular, Z, is the

set of all integers except zero. Then we will refer to an iid ther whose cf,P ,

obeys the condition

form=0:;1;2:::;n 1, and 8k 2 Zg

as adither of order n. We shall see that dithers of this type are normally chosen

for use in applications because of their desirable e ects @he error signals.

2Actually, in much of the literature this function would be ca lled sinc ( u), but the stated

de nition is more convenient for our purposes and will be retained in the sequel.
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The conditions for a dither to be of ordem may also be expressed in terms of
its pdf, although these are not as useful from a practical stapoint. Straightfor-
ward application of Poisson's summation formula (Theorem AX) and the derivative
property of Fourier transforms (Theorem A.4(v)) reveals tlt if and only if a dither
is of ordern then its pdf obeys

(x"p (X)) ?W (x)= E[ "[;
a constant, form=0;1;:::;n 1, where have made use of thenpulse train
wett x k)
k=1
In particular, for a dither of order greater than or equal to 2ro we have
? p(x k)=1:
k=1

An example of a dither of ordern is the so-called WRPDF dither" produced
by summingn statistically independent uniformly distributed random processes of
peak-to-peak amplitude . Summing statistically independent random processes
convolves their pdf's, thus multiplying their cf's (see Therem 2.2). Therefore the

cf of an nRPDF dither is " "
sin( u) "

P (u)= "

A general formula exists for the pdf of amRPDF random process [35], and this
may be integrated to nd a general expression for the momentbereof, but these
formulae are unwieldy and not very instructive. For our purpses two observations
will su ce: rst that all odd moments of nRPDF processes are zero since the pdf's

are even, and second that fon 2

dd—;[sinc ¢)]" = n(n  1)[sinc ®)]" [sind? (x)]? + n[sinc x)]" *sind? (x)
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so that
2

i 2
1= 1 " po-= :
E[ ‘] 5 P¥“(0)=n 1
Of course, this is just the sum of the powers of statistically independent uniformly

distributed random processes, as expected.

2RPDF dither, being in common use, is frequently referred tas TPDF (for
Triangular Probability Density Function), since the convolution of two uniform

pdf's is triangular in shape:
!

g 1y 1 ;0 j<,
[ 7 10)= 5
' 0; otherwise.
3RPDF dither is sometimes referred to as PPDF (foParabolic Probability Den-
sity Function), since this pdf is piecewise parabolic. We observe that aiRPDF
random process has a maximum peak-to-peak amplitude of since its pdf is the

convolution of n uniform pdf's.



Chapter 3

A General Theory of Dithered

Quantization

This chapter presents a general theory of dithered quantidan, with undithered

(UD), subtractively dithered (SD) and non-subtractively dthered (NSD) systems
as special cases to be elucidated later. Included is a thogbuanalysis of the
statistical relationships between the signals indicatechiFig. 2.1. The approach
used is to derive the joint cf of all random variables of intest so that the joint
cf's of subsets of these variables are easily found by segffinnwanted arguments to

zero (see Theorem 2.4).

We de ne the vector
4 P, N
X=(X1;X2;X3; 110 Xn) 2 R

where the components represemMi system input values occurring at distinct times.

That is, x; and x,, say, represent distinct but not necessarily successivelwes of

30



CHAPTER 3. A GENERAL THEORY OF DITHERED QUANTIZATION 31

the system input. The following vectors inRN are de ned in an analogous fashion:

wi;w s Gy:tig:

Corresponding entries in each vector are taken to be simuftaous.

Furthermore we de ne the vector
r3(a;my; Swlw; x) 2 RV:

Taking N = 1 corresponds to considering the system at a single instam time,
and the reader should feel free to consid®& = 1 upon a rst reading if this aids
in understanding. It turns out that taking N 1 does not much complicate the
analysis since each signal present in the system at any givme can be expressed
algebraically in terms of the signalx and present at that time without reference
to any later or earlier signal values. Initially we will makeno assumptions regard-
ing the statistical relationship betweenx and , since this may be complicated,
with signal values at di erent instants in time a ecting one another. (This is the
case, for instance, when noise shaping error feedback isser in the system; see

Section 5.2.)
Using the de nition of conditional probability [30] we have

Pe(r) = Py owow:ix (1)
Priy: owow; x (1)
Pyj owow; x (1)
P gwow; x (1)
Pugw; x (1)
Puwj ix (1)
P (r): (3.1)
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We will proceed to write down an expression for each quantity this product.

Sincew x+ we have

pwj X (I‘) = (W X)

where the delta function with a vector argument is de ned as &nsor product of

delta functions:

W
02 ()

i=1

Consider the special case whel = 1 so that all function arguments are scalars
and only one instant in time is involved. Quantizer output vdues are restricted to

multiples of , so we can write pygw. x (r) as a product of the impulse train

W (w92 ? w° k) :
k=1

with an appropriate window function. If a quantizer input vaue, w, satis es
2n 1) =22<w< (2n+1) =2

for somen 2 Z, then the quantizer output value isn . Thus we can use a rect-
angular window function of width to select the appropriate delta function from

W (w9. In particular, we can write!

Pwgw; x () = w® W)W (w): (3.2)

1The astute reader may observe that the case where falls at a quantizer step edge has been

neglected. The indicated product of generalized functionén fact represents the cpdf of astochastic
quantizer, as is discussed in detail in Appendix A. Forw = (2n+1) =2 the output of a stochastic

guantizer is eithern or ( n+ 1) with equal probability.
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Since quantizations occurring at di erent times have no e et on one another, the
treatment is trivially extended to handle N 1 by de ning the following scalar

functions of vector arguments:

(x) = (i)
i=1
and
W 2 W (x)
= (x k)
k2zN
where

ké( Kei; Ko; Kapirkn) 2 ZN:

With these de nitions, Eq. (3.2) applies whenN 1.

Now since
8
% 0;  UD systems,
0 = E 0;  NSD systems,
- ; SD systems,
q= w w
n - y X

y = %+w° (3.3)
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the other conditional pdf's are of the following obvious fans:

8

% (9 UD systems,
§ (9; NSD systems,
T( %+

p Gwow; ;x (I’)
); SD systems.

Pgry; owew;x (1) = (q wo+ w);
Priy: owow; x (r) = " y+x);
Pyj owow; x (1) = (Y o wY:

We now wish to form the product in Eq. (3.1) and to nd its Fourier transform.

We begin with
Pu; x (1) = Pwj o (W5 5X)Poc (5X):
Using Theorem 2.5, the associated joint cf is given by
Puw:x (UysU jUx) = Py (U + Uy; Uyx + Uy):

Then

Pwaw; ;x (W w; » X ) Pw; x (W55 X))
(W W)W (WP (W; $X)

fFAL  (W)pw; x (W; ;X)lgW (W) (3.4)

Pwow; x ()

where we uséA to denote composition with a linear coordinate transformabn of

(W% w; ;x) with transformation matrix

2 3
1 1 0
0 1 O
A= :
0 0 1
0 0 01
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Using Theorems A.4(viii) and A.5 from Appendix A we obtain tle convolution

Pwow: x (Uwo; Uy; U ;5 Ux)

fsinc (Uwo)Pw: x (Uwo+ Uy; U ;Ux)9? Wi (Uyo) (3.5)
! !
X k k
sSinC Uyo — Py.x Upot+ Uy —;U ;Ux
k2zN | I
X ! !

k2zN

. k k k
sinc uyo — Py Uyot+ Uy,+ U —Uyot Uy + Uy —

The result is valid for N 1 with the de nition

: s ¥
sinc(X)=  sinc (x;):
i=1

The remaining factors in Eg. (3.1) are handled by repeated gfcation of The-

orem 2.5 using Egs. (3.3). For the Fourier transform variabk involved we will use

the shorthand

4
Ur =(Ug; U Uy U 0} Uyo; Uy U Uy) 2 REV:

In an NSD system we have

P (ur)

Pey. owow: x (U5 Uy; U o Uyo+ Ug; Uy Ug U ; Uy)
Py. owow: x (Uy + Us; U ojUyo+ Ug; Uy Ug U ; Uy  U-)
P OwOw; :x (U o+ Uy + U"; UWO + Uy + U + Uq, UW Uq, u , UX U")

Pwow; x (Ugo+ Uy + U + Ug; Uy Ug U j Uy U):

In an SD system,

Pr(ur)

Pey. owow: x (U5 Uy; U o Uyo+ Ug; Uy Ugy U ; Uy)
Py. owow: :x (Uy + U+ U o Uyo+ Ug; Uy UgiU ;Ux  U-)
P OwOw; :x (U o+ Uy + U"; UWO + Uy + U + Uq, UW Uq, u , UX U")

Pwow: % (Ugo+ Uy + U + UgiUy  UgU  Uo Uy  UsUg U
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For a UD system" = g, w°=y, w= x and °=0. We can treat such a system
as a special case of SD (or NSD) systems by setting uyo, u, andu to zero and

using P . (0; ux) = Py(uy). The following relatively simple result is obtained:

Theorem 3.1 In an undithered quantizing system
! !

X k k
Pgyx (Ug; Uy Uy) = sinc ugtu, — Py utu — @ (3.6)
k2zN

The results for SD and NSD systems are somewhat more complezhlooking.

Theorem 3.2 In an SD quantizing system
|
X k'
Pr(uy) = SINC Ug+ U+ Uy + Uyo —
k2zN ]

k k
P« Uo+ Uyo+ Uy + U —;Uy+ Uyot Uyt Uy — @ (3.7)

Theorem 3.3 In an NSD quantizing system
|

X k
Pr(up) = SINC Ug+ U+ Uy + Uyo —

k2zN |

k k
Px U + U+ Uyo+ Uy + U —;Uy+ Uyo+ Uy + Uy — : (3.8)

Now nding cf's or joint cf's of particular signals is straightforward since, accord-

ing to Theorem 2.4, we only need to set the unwanted Fourieransform variables
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to zero. For instance, for both SD and NSD systems with = 1 we obtain the

same expression foP, by setting all variables exceptu, to zero:
! !

X k k k
Pq(ug) = sinc u4y — Pyx —; —
k=1
If and x are assumed to be statistically independen® ., splits into a product
yielding
X k
Pq(ug) = sinc u4; — P — Py —
k=1
Similarly, the cf of " in an NSD system where and x are statistically independent
IS:
‘o k
P.(u) = sinc uw — P uw — P —
k=1
The corresponding expression fd?- in an SD system is di erent. It is identical to

the expression given above fdP, since, in an SD systemg)



Chapter 4

Practical Quantizing Systems

In this chapter we proceed from the general to the speci c, iarpreting the results
obtained above with regard to particular realizations of gantizing systems. We
begin, however, with a brief description of the classical ndel of undithered quan-
tization in order that it may be contrasted with the more soplisticated treatment

to follow.

4.1 The Classical Model of Undithered Quanti-

zation

We have seen that in an undithered quantizing system

"= q0):

Although this is a deterministic function of the input, the classical modelof quan-

tization treats this error as an additive iid random processvhich is independent of

38



CHAPTER 4. PRACTICAL QUANTIZING SYSTEMS 39

the input and uniformly distributed. In particular, the quantization error variance

(or \power") is taken to be 2=12 in the classical model [36].

This model of quantization error is suitable for complex (gasi-random) input
signals which are large relative to an LSB. It fails catastighically for small or simple
signals where, in undithered systems, the quantization enr retains the character

of input-dependent distortion and/or noise modulation.

The non-random nature of the error can be demonstrated by ug a computer
to simulate the undithered quantization of a very simple sigal: say, a 1 kHz sine
wave of 4.0 LSB peak-to-peak amplitude. Fig. 4.1 shows thessgm input and
output from such a simulation, as well as the resulting totakrror signal, and the
estimated power spectrum of the system output. Evidence ohé input signal is
clearly visible in the total error waveform. In the power spetrum, many sharp
peaks fall at multiples of the input sine wave frequency, indating not only a high
degree of non-random structure (i.e., harmonic distortignin the error signal, but

also a strong relationship between this signal and the systeinput.

The substantial discrepancies between the classical modélquantization and
the observed behaviour of quantizing systems helped to sptire development of

more sophisticated models of this process.

4.2 Widrow's Model of Undithered Quantization

A generalized statistical model of undithered quantizatio, valid for inputs with
arbitrary statistical properties, was rst developed by Widrow [2, 3, 4] in the 1950's.

Widrow realized that quantizing a signal transforms its pdinto a train of weighted



Input Amplitude [LSB]

Error Amplitude [LSB]

CHAPTER 4. PRACTICAL QUANTIZING SYSTEMS 40

3.0

3.0 ¢t

0.0 0.2 0.4 0.6 0.8 1.0
Time [msec]

(@)

15

10 ¢

05 r

0.0 |-

-05 r

-1.0 -

-15 ¢

0.0 0.2 0.4 0.6 0.8 1.0
Time [msec]

(©)

Output Amplitude [LSB]

Power Spectral Density [dB]

3.0

3.0 ¢

0.0 0.2 0.4 0.6 0.8 1.0
Time [msec]

(b)

40

30 r

10
Frequency [kHz]

(d)

Figure 4.1: Results from the computer-simulated quantizaton of a 1 kHz sine
wave of 4.0 LSB peak-to-peak amplitude without dither. Shown are (a) the
system input signal, (b) the system output signal, (c) the resulting total error

signal, and (d) the power spectrum of the system output sign&a(as estimated
from sixty 50%-overlapping Hann-windowed 512-point time records with an
assumed sampling frequency of 44.1 kHz; 0 dB represents a pewspectral
density of 2T=6 where T is the sampling period).
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impulse functions in a fashion reminiscent of time-sampliy so that recovery of the
system input statistics from those of the system output mustequire conditions
analogous to those of Sampling Theorem [1]. The developmdmtre di ers from

Widrow's in its details, the results are somewhat strengtheed, and the proofs are

new, but the essential nature of the approach owes much to hasiginal.

4.2.1 UD Systems: Statistics of the Total Error

We begin by considering the statistical relationships beten variables in the system
at some given instant in time. (This corresponds to choosiny = 1, but in fact
the argument is identical forN > 1.) Setting uy :| 0 in Eq. (3.?) we obtain
Pgx(Ug; Ux) = sinc ugq 5 Py Uy 5 : 4.1)
k=1

If qandx are to be statistically independent, this must equal the prduct Py(uq) Py (ux).

Then, letting uq = "=, we have
! !

Pq I Px(uX) = PX UX I

Now we must have |

otherwisejPy(uy)j > 1 for some value oti,, which is impossible for a characteristic

function (by Theorem 2.7(iii)). Then, letting uy = 0 we have
!
P, — =1; 8 2 7Z:

Thus, by Theorem 2.7(iv), p, and pq are both lattice densities of delta functions

separated by intervals of width . That is

*
px(x) = G (x (k+1))

k=1
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h
for some! 2 3;1 . Of course, this means that
Po(a) = (q+ 1)
so that the quantization error has a xed valué of ! . Clearly this is statistical

independence in only a purely formal sense and certainly dorot imply that the

error distribution is independent of the input distribution.

It is natural to wonder under what conditions g exhibits a uniform pdf of the

sort assumed in the classical model.

Theorem 4.1 The total error produced by an undithered quantizing systeis uni-
formly distributed if and only if the cf of the system inputPy, satis es the condition

that

Proof : Setting u, =0 in Eq. (4.1) yields
o k-
Pq(ug) = sinc u4, — Py — (4.2)
k=1
If the error is to be uniformly distributed, Eq. (4.2) must reduce to a single sinc
function centred at the origin. Thus the \if" direction is immediate. To prove \only
if" suppose that

: . k
sinc (ug) = sinc uq, — Py —
k=1

1Assuming a stochastic quantizer,! = % is a special case in which system outputs of =2

are produced with equal probability.
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Now let us = "= where " 2 Z,. This yields
| |
Xk k'
sinc —— Py —

0

There are at least two other ways of showing this result. Fitly, we may write

Eq. (4.2) as ) .
Pq(u) =sinc (u) ? Py W1 ( u);

the inverse Fourier transform of which is (see Theorem A.5):
Pa(Q) = (D[P ?W ]( a):

Using Poisson's summation formula (Theorem A.7) we have

p( g k)
k=1 |
= * PX E ej2kq=
k=1

[ p?W ]( 9

If and only if the conditions of the theorem hold, the last summation reduces to

Px(0) = 1 so that py =

One may also reason as follows (after Gray and Stockham [14]p, can be

non-zero only on ;- , so that we may expand it as a Fourier series on this

interval:
1 R o
pq(q) - C e|2kq_

k=1
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where

Z = _
py(g)e 124 dq
=2 .

= E e l2ka=

E o i2k(b+ic *)

o
1

h
E e|2kx=
|
k.
PX -

Here we have used Eq. (2.3) and the fact that the oor operatareturns an integer.
We see thatpy(q) = + on
hold.

=, If and only if the conditions of Theorem 4.1

The conditions in the theorem are not actually due to Widrow ht to Sripad
and Snyder [8]. Widrow [4] cites a di erent condition, whichis su cient but not
necessary; viz.,Px(u) = 0 for juj 1=. Widrow calls this requirement \half-

satisfaction" of the conditions of the Quantizing Theorem¢f. Theorem 4.3).

Note that if the requirements of Theorem 4.1 are satis ed, tbn the error is
of the sort which is postulated by the classical model insafas it is uniformly
distributed with moments given by Eq. (2.9). Note also, howeer, that the error is

not formally statistically independent of the input since
!

Py 5 61 for K6 0:

The statistical relationships between pairs of total errovalues separated in time
are of particular interest since these determine the powepeactral characteristics of
the total error signal. Consider two system input valuesx; and X,, occurring at

timest, andt,, respectively, so that they are separated in time by = t, t; where
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6 0. Their statistical relationship is described by their jant pdf, px,x,(X1;X2).
Taking N =2 in Eq. (3.6) and letting (uy,;uy,) = (0;0) yields
| |
L ki . '
Pai:geixixs (Ugrs Ug s Uxy s Ux,) = sinc Ug, L sinc Ug, b
ki=1 k=1

k k

Paxs U —ilx,  —
Proceeding as before, it is straightforward to show that tisi only splits into a
product of Pg,.q, (Ug, ; Ug,) With Py, x,(Uy, ; Ux,) When the latter is a two-dimensional

lattice distribution. Setting (uy,; Ux,) = (0;0) yields
| | |

R Ky Ky k Ky
. — ; 1 . 2 1, 2
PQl;Q2(UQ1’ UQ2) - sinc ufh sinc UQ2
ki=1 k=1

which leads to the following second-order version of Theone4.1:

Theorem 4.2 In an undithered quantizing system, the joint cfP-,..,, of total error

values,”; and",, separated in time by 6 0 is given by

p..("1"2) = (") ("2) (4.3)

if and only if the joint cf, Py,«,, Of the corresponding system inputsx; and x,

satis es the condition that

le;xz —;— =0 8(k1; kz) 2 Zg:

Eqg. (4.3) shows that, subject to the speci ed conditions, ta joint pdf of "; and
", is a product of two rectangular window functions, one of whitcis a function

of ", alone and the other of', alone. Hence the two error values are statistically
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independent of each other and each is uniformly distributed Note that if the

conditions of Theorem 4.2 are satis ed then so are those of &@brem 4.1.

For an undithered system satisfying the conditions of Theem 4.2 at all times
t; and t,, the total error is wide-sense stationary with an autocoritation function

given by

8
2 B[ k=0;

r-(k)
E [" 1JE["2]; otherwise,

>
8
1— =0;
3
0; otherwise.

Thus its PSD is given by

2
PSD.(f) = 6T;

which is constant with respect to frequency so that the errosignal is spectrally
white and exhibits a total power of 2=12 up to the Nyquist frequency. In this

respect the error is of the form assumed by the classical mbadé quantization.

4.2.2 UD Systems: Statistics of the System Output

We now proceed to investigate the statistical properties dhe output of an un-
dithered quantizing system.Py can be obtained immediately from Eq. (3.6) but it

is also instructive to consider Widrow's reasoning as foiks [4].

The output can only assume values which are integer multigeof the quanti-
zation step size, . Referring to Fig. 4.2, we see that the prbability of an output

having valuey = k, for some speci ed integer k, is equal to the probability that
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Figure 4.2: Pdf of the quantizer input in an undithered quantizing system,
showing its justi cation relative to the quantizer charact eristic.

the input lies between - + k and - + k. Hence,

X Z s+k
py(y) = (y k) . Px(x)ax: (4.4)

k=1 z*
Borrowing Widrow's terminology, we say that the quantizaton operation performs
\area sampling" of the input distribution?. Writing the integral in Eq. (4.4) as a

convolution of p, with a rectangular window function, it reduces to

py(y) =1 ?RJY)W (y): (4.5)

Taking the Fourier transform of this expression yields (se€heorem A.5)

Py (u) [sinc (u)Py(u)] ? V|VL(U)

|
* k k-
sinc u — P, u — ; (4.6)

k=1

2Note that Eq. (4.4) loses its meaning wherp, contains delta functions at quantizer step edges,
but that Eq. (3.6) does not.
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which agrees with the expression obtained from Eq. (3.6).

Under what conditions arey and x identically distributed? Suppose that
! !

* k k
Py(u) = sinc u — P, u — ;
k=1
and letu= = ;2 Z: We nd that
!
PX I = Px(o):1

so that, by Theorem 2.7(iv), we have
*
P (x) = G (x k)
k=1
Thus we obtain the intuitively satisfying result that p,  py if and only if the input
is restricted to integer multiples of . We will see, however that the statistical
properties of the input can be recovered from the output subject to ceria less

restrictive conditions.

It is useful to rewrite Eq. (4.6) in the form

Py(U) = Gy(u)?Wa(u)
|
R k-
= Gy, u — (47)
k=1
where we have de ned
G2 D, ) (48)

Hence, Py (u) consists of \aliases" of the functionG,(u) separated by intervals of
1=. Note, however, that if P, is supported such thatPy(u) = O for juj zi
(i.e., if, in the parlance of signal processingy is \bandlimited"), then the aliased
versions ofG4(u) do not overlap, allowing recovery of the input cf (and hencée

input pdf) from that of the output by bandlimiting. Indeed, t his is [2, 3, 4]:
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Theorem 4.3 (Widrow's Quantizing Theorem) The pdf, p«(x), of the input,
X, to an undithered quantizing system is recoverable from tpdf of its output if the

cf of the input, Py, is supported such thaPy(u) =0 for juj Zi

Obviously, this theorem closely resembles the Sampling Térem, which allows
recovery of an appropriately bandlimited analogue signaldm discrete-time samples
thereof. The di erence, of course, is that the Quantizing Thorem pertains not to
time-sampling, but to amplitude quantizing of a signal (i.e to area-sampling of

the pdf of a signal).

It should be noted that the conditions of the Quantizing Thecem cannot be
met unlesspx(X) is not supported on a nite interval. This must be the case
because ifPy(u) is supported on a nite interval then its inverse Fourier transform
cannot be [37]. Widrow [4] discusses signals, such as largghatude processes with
Gaussian distributions, which come close to satisfying theonditions. Here we will
be satis ed with some qualitative observations. First, we &ve from Theorem 2.1
that

Pax(U) = Py(au); a2R;

so that, roughly speaking, wide pdf's have narrow cf's. Alsat can be shown [38]
that if p;pd;:::;p" Y are continuous and tend to zero at in nity, and p{™ is

absolutely integrable, then

im u"Py(u) =0;
jujls

so that the smoother the pdf of a random variable the more ragiy its cf tends
to zero at innity. Thus large amplitude signals with smooth pdf's will come
closer to satisfying the Quantizing Theorem. In such caseslatively few terms

will signi cantly contribute to Eq. (4.2) so that the quanti zation error will be more
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uniformly distributed, and it is not dicult to show that cor relations between
samples of the error and between the error and the input dimish as well. Indeed,
it is under these conditions that the CMQ has been found to bedaquate for

practical purposes.

In practice, recovering thepdf of the input is often unnecessary and it is su -

cient to recover themomentsof the input signal from the output. These are given

by
m J m (m)
Ey"= 5 PO

If the Quantizing Theorem is satis ed then the aliased versns of G,(u) do not
overlap, so that the m-th derivative of Py(u) at the origin is determined only by
the \baseband" (k = 0) term in Eq. (4.7). This is also true, however, subject to he
weaker condition that the Quantizing Theorem is only half-atis ed (see remarks

following Theorem 4.1) or the still weaker condition that
!

G{m 0 8k2Zy (4.9)

If the input statistics obey this condition then

m

Ely™] G{™(0)

N

2

- mxrl -

2‘— T sind? (0)P(™ 1(0)

!r=0

M E[ERT 1]

r=0

where is a notional uniformly distributed random variable which 8 sometimes
thought of as a \quantization noise" but which, strictly speaking, is not physically

meaningful. Thus we have succeeded in expressing the monseoty in terms of
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the moments ofx. Using Eqg. (2.9) we obtain the following useful relationsps:

Ely] = E[X] (4.10)
2
Ely?] = E[x2]+E (4.11)
ﬂc ! ~ m <
Ey"] = e m _ E[)(72]: (4.12)

w 2 2 2 +1
Solving these equations to nd the moments ok in terms of the moments ofy
yields the well-known Sheppard's corrections for groupinN@9]. We emphasize that
each of these equations faE[y™] is only valid when Eq. (4.9) is satis ed for that
particular value of m, and that the validity of one of these equations does not
imply the validity of any others corresponding to di erent m values. We observe,
in particular, that if Eq. (4.9) is satis ed for m = 2, then the variance ofy = x + "
is the same as that ofx plus a statistically independent additive random process

with uniform pdf.

We note in passing that by repeated di erentiation of Eq. (48) for Gy (u) we
can derive from Eg. (4.9) the following stronger, but perhapmore practical, con-
dition in terms of the input cf, which ensures thatE[y™] obeys Eq. (4.12) for
m=1;2:::;M:

|

Px(i) E =0

8k 2 Z, and for i=0;L2:::;M 1

From Eq. (3.6) with N = 2 we nd that the joint pdf of two system output

values,y; andy,, separated in time by 6 0, is given by

Py, (U1 U2) = Gy, (U5 U2) ? Wa (U)W (Uy);
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wherex; and X, are the corresponding system inputs and where we have de ned

4 Sin uq) sin u
Gyyx,(U1;U2) = ( U 1) sin( U 2) Py, (U1; U2):
1 2

We can now write a second-order analogue of the Quantizing &@brem; namely,
that the joint pdf of the input is recoverable from that of the output if

R T |
Pu: (U1 Uz) =0 wheneverjuyj o= orjuz =

Of perhaps greater interest, however, is the second-ordenadogue of Eq. (4.9),
which allows us to recover the joint moments of the system inp from those of the

output. That is, if

|
: ki ko
G == =0 8(kike) 2 Z3
then
mi,,m J murma (mq;mp2)
E[yl 1y2 2] = 2_ le;;’z 2 (O’O)
_ b)%cg%c m1! m2! B 2(1+72) E[XTl 2‘1X2”Iz 2‘2].(4 13)
=0 pm0 21 22 2 (1+1)@272+1)
Thus, assuming thatx is wide-sense stationary,
8 2
2 E[x2]+ —: for k=0;
ry(k) = 1 (4.14)

E[x1X2](K); otherwise,

so that the power spectral density of the output is identicalo that of the input apart
from an additive white-noise component arising from the qumization operation;

that is:

ZT.

PSD,(f) = PSD,(f ) + (4.15)
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4.2.3 Non-Stochastic Quantizers

UD quantization is the exceptional instance when the choideetween a stochastic
and deterministic quantizer would appear to make a di erene to the statistical
behaviour of signals in the system. One would expect this toebthe case if the

guantizer input pdf has the form

2k +1
2

R
Px(X) = Gk X
k=1

In this case, the input falls on a quantizer step edge with nerero probability.

Suppose that a deterministic mid-tread quantizer is chosesuch that inputs at
step edges are consistently rounded up. In this case, we caeddce the system

statistics by inspection:

2k +1
2

R
Poyx(A;Y;X) = g+ — & (y k)

k=1
We nd, as before, that the quantization error is formally sttistically independent
of the system input but certainly not uniformly distributed. This is similar to the

result found when stochastic quantization was assumed.

4.2.4 Summary of Undithered Quantization

In a sense, the results of this section are primarily of theetical, rather than practi-
cal, interest. All of the theorems given above impose condins upon the statistics
of the system input, and such restrictions are usually undeable or impossible
to meet in practice. Some not-uncommon system inputs satysthe conditions of

Theorem 4.1 (e.g., a 1RPDF random process) so that the assaed error will be
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uniformly distributed. On the other hand, however, the condions of the Quan-
tizing Theorem (Theorem 4.3) cannot be met byany system input whose pdf is
supported on a nite interval so that, in practice, the distribution of the system

input cannot be precisely recovered from the distribution fathe system output.

There now becomes apparent, however, the possibility of baring the system
input with a suitably chosen dither signal, , so as to ensure that the quantizer
input, w = x + in Fig. 2.1, satis es some of the aforementioned conditiondn
particular, if the dither is statistically independent of the system input, then the
pdf, py, of w is the convolution p, = px ? p, and hence its cf is the product
Pw = Py P . In this case the dither statistics can be chosen so as to cau®,
to vanish at required places, and so force the total quantizenput to meet the
conditions of, say, Theorem 4.1. This accomplishment cannben be subsequently

undone by any system input which is statistically independ# of the dither.

These tentative ideas will be developed in detail in the faiving sections.

4.3 Subtractive Dither

4.3.1 SD Systems: Statistics of the Total Error

In an SD system the quantizer input isv = x+ so that the output of the system
is (see Fig. 1.3(b))

y=Q(x+ )
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Hence the total error is given by

Yy X
Qx+ ) (x+ )
qx+ );

which is simply the quantization error,q, of the total quantizer input, w. We will

assume that and x are statistically independent.

The following provides a new strengthening and proof of a nds which was rst

reported by Schuchman [7].

Theorem 4.4 (Schuchman's Condition) In an SD quantizing system, the to-
tal error will be statistically independent of the system put for arbitrary input
distributions if and only if the cf of the dither,P , satis es the condition that
|
P K =0 8k 2 Zy: (4.16)
Furthermore, the total error will be uniformly distributedfor arbitrary input distri-

butions if and only if this condition holds.

Proof : From Eq. (3.7) we obtain
| | |
. k' k' '
Py (U Uy) = sinc u» — P — Px ug

k=1
(4.17)

If the condition of the theorem is met, this expression spktinto a product of Py (uy)
with
P-(u-) = sinc (u-)

so that the error is uniformly distributed and statistically independent of the input.



CHAPTER 4. PRACTICAL QUANTIZING SYSTEMS 56

Now suppose that the input has some arbitrary distribution ad that the error

and input are statistically independent so that Eq. (4.17) an be written as a

product P-(u-)Py(uy). Th?n if u- = "= for sor|ne "2 27y thi|s yields
Po— PU)=P — P ou —
Now if |
P — 60

then we must have I !

since otherwisgPy(uy)j > 1 for someuy. Thus
|

IPx(udi= Px ux  —
Letting uy = 0 shows that the input must have a lattice density, which cotradicts
the assumption that it is arbitrarily distributed. Thus we conclude that for any
22 B

Finally suppose that the input has some arbitrary distributon and that " is

uniformly distributed. Eq. (4.17) then gives|

: : k k' k
sinc (u-) = sinc u- — P - P, —
k=1
Letting u- = "= where " 2 Z, then gives
! !
0="P — Py —

Sincex is arbitrarily distributed this yields the desired result.

2
The above result regarding statistical independence was tnexplicitly mentioned

by Schuchman [7]. It is found explicitly stated for the rst time in [9].
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Proceeding in similar fashion, we can use Eq. (3.7) with = 2 to deduce that for
two total error values,"; and",, separated in time by 6 0, and the corresponding
input values x; and x, we have [23]:

P"l;"z;Xl;Xz(u"l; Uy 5 Uxys qu)
* *

: Ki . ko
= sinc u-, — sinc u-, — P,., —; —
ki=1 k=1

Pxix, Uxy  —iUx, —

where P ,. , represents the joint pdf of dither values ; and ,, applied to input
valuesx; and x,, respectively. This leads, via the same brand of argument ased

above forN =1, to the following conclusion:

Theorem 4.5 In an SD quantizing system, wheré, and ", are two total error
values separated in time by 6 0 with corresponding input valuex; and x, and
dither values ; and ,, respectively, the random vectof";",) is statistically in-
dependent of the the random vectdii; X,) for arbitrary input distributions if and

only if
P., =2 =0  8(ki k) 2 22 (4.18)
Furthermore, if and only if this condition holds then
P ("n"2) = (") ("2); (4.19)

so that",; and", are both uniformly distributed and statistically indeperght of each

other.

It should be noted that if ; and , are statistically independent of each other,
and the cf of each satis es Eq. (4.16), then Eq. (4.18) will Hd. This is the situation

of interest in most practical applications using subtractie dither.
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Subject to satisfaction of Eq. (4.18), the joint moments of, and ", are given
by
E['T?] = E[TIEFT?)

so that "'t and "5'? are, of course, uncorrelated. In particular, fom; = m, =1

E["1"2] E["1]E["2]

0:

Indeed, if the theorem is satis ed for all ; and , separated in time by 6 0, and

the conditions of Theorem 4.4 also hold, then

8
2
5 __: k=0
)= 12
~ 0; otherwise.
so that
2
PSD.(f) = 6: (4.20)

This indicates that in a properly dithered SD quantizing syem the total error

signal will be spectrally white even if the dither signal is at.

4.3.2 SD Systems: Statistics of the System Output

From Eq. (3.7) we have

R k
Py(u) = sinc u — P — Pk u — (4.21)
k=1

Now suppose that the dither signal satis es the conditionsforheorem 4.4. Then,
since the total error is statistically independent of the iput and uniformly dis-

tributed, and since the output is given byy = x + ", the cf of the output should be
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the product

sin(  u)

Py(u) = Py (u): (4.22)

Indeed, this is the expression to which Eq. (4.21) simpli eander the conditions of

the theorem. This shows that

[P ?pd(y)
[ ? p(y):

py(Y)

The output statistics assume this simple form for arbitraryinput distributions
only if the conditions of Theorem 4.4 are met, as may be vericeby substituting
Eq. (4.22) into Eq. (4.21) and lettingu = "=, " 2 Z,.

In this case the output is precisely the sum of the input plus atatistically
independent uniformly distributed random process, and itef and pdf exhibit the
form expected of such a sum. The moments of the output in terned the moments

of the input are given by Eq. (4.12) above, which, in this cases valid for all m.

Furthermore, if and only if P ,. , satis es the conditions of Theorem 4.5, then

sin( ug)sin(  uy)
(OE1 U->

Py, (U1; U2) = Px1:x, (U1; Ug):

Hence, the joint moments of the output in terms of the momentsf the input will
be given by Eg. (4.13) above, and Egs (4.14) and (4.15) will lab That is to say
that the quantization operation has merely added to the inpusignal a white noise

process of variance 2=12.
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4.3.3 SD Systems: Properties of Practical Dither Signals

It is naturally of interest to inquire as to which common ran@m signals satisfy the
criterion of Theorem 4.4. Perhaps the simplest imaginablendidate is dither with

the uniform pdf

p()= ()
whose corresponding cf is the sinc function:
sin(  u)
P(u= ——~;
(W) -

This cf clearly satis es the desired condition. We concludéhat 1RPDF dither
will render the total error statistically independent of the input and uniformly
distributed in a subtractively dithered quantizing system If we assume that values
in the dither sequence are iid then the criterion of Theorem.8 is also satis ed
and distinct values in the total error sequence are statistally independent of one
another (thus ensuring that this sequence meets the weakexquirement of being

spectrally white).

Of course, there are other cf's which meet the requirement génishing at all
non-zero multiples of £. For instance, nRPDF dithers with n 1 all satisfy the
criterion since their cf's are of the form

" #
sin(  u)

P (u)= 5

However, in an SD system, such dithers usually have no inhateadvantage over

simple white 1RPDF dither. (An exceptional instance is diagssed in Section 5.3.)
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4.3.4 Summary of Subtractive Dither

The most practically important theoretical results conceming subtractively dithered

quantizing systems are that:

1. the total error can be rendered uniformly distributed andstatistically inde-
pendent of the system input by choosing a dither which satigs the conditions

of Theorem 4.4, and

2. values of the total error separated in time can be renderestatistically in-
dependent of one another (so that the total error signal is sgtrally white)
by using a dither whose values, in addition to satisfying Thewem 4.4, are

statistically independent of one another.

A familiar dither which satis es all the required conditions is an iid 1RPDF
process. Fig. 4.3 shows the results of a computer-simulatgdantization operation
performed upon a 1 kHz sine wave of 4.0 LSB peak-to-peak anpdie and using
this type of subtractive dither. Shown are the system input ad output, the total
error, and the power spectrum of the system output. Note thathe system output
resembles a sine wave plus an independent additive noisehemit vestiges of the
guantization staircase characteristic, and that no tracefahe input signal is visible
in the noise-like total error waveform. Furthermore, the pwer spectrum of the
system output exhibits no distortion components whatsoeveand shows that the
total error is spectrally white. (The 0 dB noise oor in Fig. 43 represents a power
spectral density of 2T=6, with an integrated noise power of 2=12 up to the
Nyquist frequency.) These results should be compared withase in Fig. 4.1, which
illustrate the signal-dependent distortions produced by m undithered quantizing

system with the same system input signal.
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Figure 4.3: Results from the computer-simulated quantizaton of a 1 kHz sine
wave of 4.0 LSB peak-to-peak amplitude using 1RPDF subtradive dither.

Shown are (a) the system input signal, (b) the system output sgnal, (c) the

resulting total error signal, and (d) the power spectrum of the system output
signal (as estimated from sixty 50%-overlapping Hann-windwed 512-point
time records with an assumed sampling frequency of 44.1 kH®, dB represents
a power spectral density of 2T=6 where T is the sampling period).
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Subtractively dithered quantizing systems are ideal in theense that they render
the total error an input-independent additive noise proces The requirement of
dither subtraction at the system output, however, imposesestrictions which make
it di cult to implement in practical applications. For one t hing, the dither signal
must be available at the output, and so either the dither musbe transmitted along
with the signal or synchronized dither generators must be psent at both ends
of the channel. Even more seriously, any signal editing or mocation occurring
between the original quantization and the subtraction of te dither necessitates a
like operation on the dither sequence. It is for such reasotisat subtractive dither

is generally not a feasible option.

A proposed subtractive dithering scheme which may lead to actical implemen-
tations is due to Craven and Gerzon [40]. This scheme usesit values determined
from the input signal values by means of a suitably randomidelook-up table. At
this time, the proposed procedure awaits further testing ahstandardization. Even
if these proceed in the future, non-subtractive ditheringahemes are likely to remain

preferable in many applications due to their relative simptity.

Although many of the same bene ts can be achieved with non-btractive dither
as with subtractive dither, the total error variance is inewtably greater in NSD
systems, and the beautiful result regarding full statistial independence of the total

error is unattainable, as we shall now see.
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4.4 Non-Subtractive Dither

Although some individuals in the engineering community araware of the correct
results regarding non-subtractive dither, a number of mismnceptions concerning
the technique are widespread. Particularly serious is a mastent confusion of sub-
tractive and non-subtractive dithering, which have quite derent properties (see,
for instance, [36, p. 170]). We will see that non-subtractaely dithered systems
cannot render the total error statistically independent of the inmut. Neither can
they make temporally separated values of the total error stistically independent
of one another. Theycan, however, render certain statistical moments of the total
error independent of the system input, and regulate the joirmoments of total error
values which are separated in time. For many applicationshis is as good as full

statistical independence.

4.4.1 NSD Systems: Statistics of the Total Error

The quantizer output in a non-subtractively dithered quanizing system is given by
(see Fig. 1.3(c))

y=Qx+ ),
so that the total error is
"=y X
= Q(x+ ) x
= qx+ )+

Obviously, the total error is not simply the quantization eror alone, but also in-

volves the dither. This fact is responsible for the charaatistics of NSD systems
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which distinguish them from SD ones. Chief among these is th@lowing [23]:

Theorem 4.6 In an NSD quantizing system it is not possible to render theté&d
error either statistically independent of the system inpubr uniformly distributed

for system inputs of arbitrary distribution.

Proof : From Eq. (3.8) we obtain:
! ! !
* o k K
Py (U Uy) = sinc uw — P u — Py uy

k=1
(4.23)

Now suppose that for arbitrarily distributed inputs we can wite this as P-(u-) Py (Uy).

Then foru- = "=, ~ 2 Zy we have
! !
P" - Px(uX) = PX UX -
Then !
Pp. — =1

since otherwisgPy(uy)] > 1 for someuy. Taking uy, = 0 we obtain
!

P, — =jP(0)j=1

so that the input must have a lattice density, contradictingthe assumption that it
is arbitrarily distributed. We conclude that " and x can never be made statistically

independent in an NSD system.

Furthermore, setting u, = 0 we have
! ! !

* k
P.(u) = sinc uw — P u — Py
k=1

(4.24)
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In order for " to be uniformly distributed, this must reduce to sinc (-) for some

choice ofP ; that is, we require
! ! !

. X k k k
sinc (u-) = sinc u — P u — Py —
k=1
Now supposeu- = "= where " 2 Z,. Then we have
! !
sinc — =0=P, —

so that P, cannot be arbitrary. Thus the total error cannot in general e made

uniformly distributed in an NSD system.

The counterintuitive nature of this result is the source of mch confusion re-
garding NSD systems. For instance, it is tempting to accepthe following line of
reasoning: suppose that a dither satisfying Theorem 4.4 ised so thatq is inde-
pendent ofx. Then, since is also independent ok, the total error " is the sum
of two random processes both of which are independent xfand thus should be
independent ofx as well. This conclusion is atly false. The analytical appoach
of Chapter 2 can easily be used to show that for arbitrary raramn variablesq, |,
and x and a third " = g+ (none of these necessarily representing quantities in a

quantizing system) that
I::"‘;x (U"; Ux) = Pq; X (U"; u-; Ux):

Obviously, " and x are statistically independent of each other if and only ik is
independent of the random vectord; ), since only in this instance doe®-., (u-; ux)

split into a product of two functions one of which involvess- alone and the otheruy
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alone. This is a stronger requirement than the one that be independent ofg and
individually. In an NSD quantizing system, givenq and , the possible values of

x are restricted tox = (q+ )+ k ; k 2 Z; so that the distribution of x is highly

dependent on ¢|; ). Of course,x would be independent ofq; ) if fq; ;xg formed

a set of independent random variables, that is, if it were thease that
Pg; i (Ugs U 5 Ux) = Pq(ug)P (U )Px(ux);
but this even stronger condition iscertainly not met in an NSD quantizing system.

We observe that the correct general expression fpr(") in an NSD system may

be obtained from Eq. (4.24) by writing it as
P-(u+) = [sinc (u)P (u)] ?[Pe( U)W (u-)l;
the inverse Fourier transform of which is:

p(") =1 ?p1(") [ ?W ]( ") (4.25)

Although the total error in an NSD system cannot be made stadtically inde-
pendent of the system input, it turns out that moments of the btal error can be

rendered independent of the input distribution. From Eq. (424) we have

Erm £ - PIM()
2 - ! !
= 1 em K p K. (4.26)
2 k=1
where
G (u)t %UU)P (u): 4.27)

Since the cf,Py, of the system input is arbitrary we obtain the following reslt [23]:
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Theorem 4.7 In an NSD quantizing systemE['™] is independent of the distribu-
tion of the system input,x, if and only if
!

k
GM =~ =0 8k2Zy (4.28)

If the conditions of Theorem 4.7 are satis ed, then from Eq.4.26),

E['"] = %-m@mwx

which is precisely them-th moment of a notional random process with cG and
pdf ? p, although this is not, of course, the pdf of'. We can derive the
following expressions for the moments of the total error inerms of the moments

of the dither signal by direct di erentiation of G (u):

E[] = E[] (4.29)
2
e[ = B[+ o (4.30)
%¥m _ Em2)

E['™] Sl S (4.31)

w 2 2 2 +1
These exhibit the form of Sheppard's corrections (cf. Eq. (#2)), but give ex-
pressions for the total error moments instead of the systemmput moments. We
emphasize that each of these equations f&["™] is valid only when Theorem 4.7
is satis ed for that particular value of m, and that the validity of one of these
equations does not imply the validity of any others correspwling to di erent m

values.

Eq. (4.30) shows that with non-subtractive dither satisfyng the conditions of
Theorem 4.7, the total error variance is greater than that otlassical UD or SD

guantization by the dither variance.
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We will prove a somewhat weaker theorem, which perhaps is Hggust a corol-
lary to Theorem 4.7, but which is actually somewhat better kawn than that the-

orem itself [10, 14].

Theorem 4.8 In an NSD quantizing systemE["™] is independent of the distribu-

tion of the system input,x, for m=1;2;::: ;M if and only if
[
pi K g
8k 2 Zg and i=0;%52:::;M 1.

Proof : The \if" direction follows immediately from repeated di erentiation of
Eq. (4.27), yielding

|
mR X |
M gngd X pomn K p K

nmm —_ J_
E[ ]_ 2 k=1 r=0

The \only if" direction employs an inductive argument. Congder rst M =1. By

Theorem 4.7 we require
@ K = .
G — =0 8k 2 Z:

Direct computation yields
! ! ! ! !

LS P X isinc K pw K

GW sinc®

P 5 fork 2 Zg:

sinc®

The derivative of the sinc function is (see Appendix C)
!
ko (1

. 1)
sind ”

60 8k 2 Z,
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so that the expression only vanishe8k 2 Z if
P — =0 8k 2 Zy:

Now consider
] 1 ] ]

5. _'B(*l _—— K E

G(m+l) sind” o P(m r+1)

r=0
and suppose that the the theorem holds fav = m, in which case this expression
reduces to | | |
G(m+1) k = ( m + 1)Sinc(1) £ P(m) i
Again the derivative of the sinc function does not vanish, save must have
!

p(m) K =0 8k 2 Zo:

This proves the theorem.

2
We see that the dithers meeting the conditions of this theone are those which were

introduced as dithers of ordeMM in Section 2.3.

Proceeding in the now accustomed fashion, we consider twdatierror values,
"1 and",, which are separated in time by 6 0, and the two corresponding input
signal valuesx; andx,. We omit the demonstration that (";",) cannot be rendered
statistically independent of (1;X,), since this proceeds in a fashion analogous to
that of the one-dimensional case discussed above, and imst@lirectly use Eg. (3.8)
with N =2 to obtain

% sin[ (up k=) osin ((up k=)

ki= 1 ko= 1 (ur k=) | (U2 ko=) '
k Ky k Ky
12 U1 _l;UZ -2 le;xz _1; —2 . (432)

P"l;"z(ul; Uz) =

P
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We proceed to investigate the joint moments of, and ", in the hope that we can

exercise some control over them by an appropriate choice bktdither statistics.

From Eq. (4.32) we nd that

E[umlum2 = 2J_ . )4 )4 X1:X2 ﬁ’ Q G(T;l;sz) ﬁ’ﬁ ’
ki=1 ko=1
(4.33)
where
sin uq) sin u
1; 2( nu 2)4 ( l) ( Z)Pi;z(ul;UZ):

us uo

SincePy, «, is arbitrary, we nd that E[']'*"5?] is independent of the joint pdf of

the system input if and only if
G(muma)  —=.—< =0 8(ky; ko) 2 Z3; (4.34)

in which case it is given by

m m J mitma
[ll in 2] - J

G(ml mz)(o 0)

In this case, we can write an expression analogous to Eq. () 3relating the joint

moments of the total error to those of the dither:

E["ml"mz]_ @%C%C m1! mz! B 2(1+2) E[ ]r:nl 2°1 Enz 2‘2]-
P2 e 21 25 2 @1+ 02, +1)
(4.35)

Note that if ; and , are statistically independent of each other and satisfy
Eq. (4.28) form = m; and m = m,, respectively, then Eq. (4.34) is automatically
satis ed. In this case Eq. (4.35) factors such that']'* and "2'? are uncorrelated
(. E['7*"537] = E['TYIE['5?).
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Let us now consider the special case whamg, = m, = 1. Explicitly performing

the di erentiation in Eq. (4.33) we obtain

H 2
non 4 )
Elyvat 5 PENE:0)
8
| |
P2 0% w2 Ky
= L sind 2 sind® 2
2 >
ki=1 kp=1
| |
ki, ko ki, ko
Pl;z T PX1;X2 —
! ! ! !
: k . k . k k k k
+sinc  — sind® 22 pto . 2 op 0 2 2
| | | |
: ky . Ky . k Ko k Ko
+sinc® = sinc 22 pOY 2 2 op ., 2 2
k | k | k k | k k | 2
#sinc — sinc = P®Y = 2 pL, = 2

Careful inspection of this expression, keeping in mind thahe rst derivatives of

the sinc function vanish at the origin, shows that it reduceso
i oa
E[12]= > P& (0;0);

thereby becoming independent of the system input, only undehe conditions of

the following theorem:

Theorem 4.9 In an NSD system where all dither values are statistically depen-

dent of all system input values,
E[“l“z] = E[ 1 2]

for arbitrary input distributions if and only if the following three conditions are
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satis ed:
|
ki Ky
P., — =2 = 0 8(kyky)2ZZ (4.36)
‘ !
P —0 = 0 8ki2Zy (4.37)
|
. k
PO 0,22 = 0 8ky2 Zy: (4.38)

We may better understand the requirements of this theorem bwriting

E["1"2] El(n+ 0)(+ 2)]

Eln] + E[an 2] + E[op 1]+ E[ 1 2]

We know from Theorem 4.5 thatE [qup] = O in general if Eq. (4.36) holds. Further-
more, it is not di cult to show using Theorem 3.3 when Eqgs. (437) and (4.38) hold
then E[qp 2] =0 and E[g 1] =0, respectively. Thus when all three equations hold

we obtainE[",",] = E[ 1 2]: (Necessity follows from the arbitrariness oPy, «,.)

We observe that if an iid dither is chosen so thaP .. ,(u;;uy) = P (up)P (uy),
and if the dither is of order at least one, then the condition®f the theorem will
be satis ed. This is not su cient to ensure that the error is wide-sense stationary,
however, since a dither of at least second order is required tender the error

variance independent of the input.

If the conditions of Theorem 4.9 hold for all ; and , separated in time by
6 0, then assuming that a dither of at least second order is udeso that the

variance of" is given by Eq. (4.30), we have
8

3 2 ?
(k) = E[ 2]+ i k=0;

E[ 1 2](k); otherwise.
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Discrete-time Fourier transforming this expression yiekl

2T
PSD-(f)=PSD (f)+ — (4.39)

where PSD represents the power spectral density of the total error an&®SD
represents that of the dither. Eq. (4.39) indicates that theotal error spectrum is
the sum of the dither spectrum and a white noise component obtal power 2=12.

This white component is sometimes referred to as the \quamtation noise."

The conditions of the theorem will certainly hold if an iid dther of second or

higher order is chosen, in which case the total error spectruwill be white.

4.4.2 NSD Systems: Statistics of the System Output

We now turn our attention to the system output of an NSD system Eq. (3.8) gives

the cf of this process as
% !
Py(u) = G u — P, u — (4.40)
k=1

and hence
- " . I#" _ i 1
m J
g p(m

Ely"] = ) 5

(4.41)
We also observe, for completeness, that the inverse Fourteainsform of Eq. (4.40)
IS
py(Y) =1 ?p ?pJ(YW (y):

Now, if the rst m derivatives of G (u) vanish at all non-zero multiples of %,

then Eq. (4.41) reduces to

o
Ey™=" T E[MER" L (4.42)

r=0
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where the expectation values of the total error are given iretms of the expectation
values of the dither by Eq. (4.31). IfP is arbitrary, then the converse must also
hold. By direct di erentiation of G (u), the above condition is easily shown to be
equivalent to the condition of Theorem 4.8 withM = m. Expanding Eq. (4.42) for
the particularly interesting cases ofm = 1;2 under the assumption thatE[ ] =0

we obtain

Ely]
Ely’]

E[x]; (4.43)
2

E[x?]+ E[ 3]+ - (4.44)

Proceeding in the usual fashion, we nd that the joint momerdg of output values

y1 andy,, separated in time by 6 0, are given by

XA J X ! " . 1#
1 R2 m m  ritra | K K
E[yleng] = ! 2 2J— G(fll;,fzz) _1; n2
k1= lII ko=1 r1=0rp=0 rl r2 »
i (mp ory)H(mz rp) . ki k !
21— p{my rimz r2) 122 (4.45)

If the indicated partial derivatives of G ,. , are zero at all non-zero multiples of
1= for r; =1;2;:::;m; wherei 2 f 1;2g (this corresponding to a second-order

analogue of the condition of Theorem 4.8), then Eq. (4.45) daces to
| |

X1 X2 m. m-
E[yfys?] = C T EMPTRIEXD Txge v
r1=0 r>=0 rl r2
where the joint moments of the total error are given in termsfdahose of the dither by
Eqg. (4.35). In particular, note that if these conditions aresatis ed for m; = m, =1,

then

Ely1y2] = E[Xix2] + E["1"2]:
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Then substituting the moment formulae Egs. (4.31), (4.35)rad (4.42) and assuming
the system input is wide-sense stationary, we have

8
2 E[xq+2E[XE[ |+ E[ 2]+ _;; k=0:
Efy:y2l(k) = 1
E [xaXo](K) + E[ 1 2](K): otherwise. (4.4p)

Hence, under these conditions, if the dither signal has zenoean then

2

6

PSD,(f) = PSD,(f)+PSD (f)+ (4.47)

so that the spectrum of the output is the sum of the input and dher spectra, apart
from a white noise component of variance 2=12 contributed by thek = 0 term in
Eq. (4.46).

4.4.3 NSD Systems: Properties of Practical Dither Signals

Recall that an nRPDF random process is one generated by the summation of
statistically independent zero-mean uniformly distribued random processes, each

of 1 LSB peak-to-peak amplitude. We will prove the following

Theorem 4.10 In an NSD quantizing system, amRPDF dither renders the rst
n moments of the total error processg['™], m = 0;1;:::;n; independent of the
distribution of the system input, and results, for a zero-na@ dither withn 2, in
a total error variance of (n + 1) 2=12 Higher moments of the error signal will,

however, remain input dependent.
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Proof : The addition of n statistically independent RPDF random processes con-

volves their pdf's, hence multiplying their cf's and yieldng

Isin( u)#m’l
G (u= U ;

the rst n derivatives of which will consist entirely of terms contaimg non-zero
powers of sin( u)=( u). Since this function goes to zero at the places required
by Theorem 4.8, the rst n moments of the error will be independent of the input
distribution. If the dither has a mean value of zero, then itsvariance is the sum
of the variances of then independent uniformly distributed random processes of
which it is the sum, so that, according to Eq. (4.30), the vadnce of the total error
is (n+1) 2=12 whenevem 2. Lemma C.2 from Appendix C shows that higher
derivatives of G will not vanish at the required locations, so that, by Theore 4.7,
higher error moments will not be rendered input independenvhen such dither is

in use.

Furthermore, it is important to note that using rectangular-pdf dithers of peak-
to-peak amplitude not equal to one LSB (or, rather, not equab an integral number
of LSB's) will not render error moments independent of the jput since the zeros
of the associated sinc functions will not fall at integral miiiples of 1= (see illus-

trations of input-dependent error moments in [16]).

We proceed to examine two important examples of non-subtriae dither pdf's.
First, consider a system using dither with a simple RPDF (of 1LSB peak-to-peak
amplitude):

p()= ()
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for which " "
. 2
sin( u)
u
The rst three derivatives of this function are plotted in Fig. 4.4. The rst derivative

G (u) =

satis es the condition of going to zero at the regularly spasd intervals stipulated by
Eq. (4.28), while the second derivative and higher derivates do not. This indicates
that the rst moment of the error signal is independent of theinput, but that its

variance and higher moments remain dependent.

These conclusions are borne out by the accompanying plotsaainditional mo-

ments representing the error moments as functions of a given inpu
Z,
E[Tixl= - "Te(x)d™
The required cpdf may be found by substitutingo,(X) = (X Xp) into Eq. (4.25),
yielding

p(") = pix("Xx0) =1 ?p 1MW (" + Xo): (4.48)

The rst conditional moment, or mean error, in Fig. 4.4 is zeo for all inputs,
indicating that the quantizer has beenlinearized by the use of this dither thus
eliminating distortion. The error variance, on the other had, is clearly signal-
dependent, so that the noise power in the signal varies witlé system input. This
is sometimes referred to asoise modulation,and is undesirable in many applica-
tions, such as in audio where audible time-dependent erroigeals are considered

intolerable.

Now consider a 2RPDF (TPDF) dither resulting from the sum of wo indepen-
dent 1RPDF processes:

p()=0 72 1) (4.49)
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Figure 4.4: Derivatives of G (u) (left) and conditional moments of the error
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E["3jx] (both in units of 3). The frequency variable, u, is plotted in units
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In a system employing this kind of dither,G (u) is given by

sin( u)#3

G (u) = "
The rst three derivatives of this function, and the correspnding moments as a
function of the input, are plotted in Fig. 4.5. The rst and second derivatives of
this function go to zero at the required places, so this ditmaenders both the rst
and second moments of the total error independent of. The second moment of
the total error is a constant 2=4 for all inputs, in agreement with Eq. (4.30). In
this case the use of an appropriate dither has eliminated bdwodistortion and noise
modulation. Higher derivatives ofG (u) do not meet the required conditions, so

that higher moments of the error remain dependent on the ingu

Using an argument derived from Wright [10, 11], we will now siw that such
2RPDF dither is unique and optimal in the sense that it is the nly zero-mean dither
which renders the rst and second moments of the total erromput independent,
while minimizing the second moment. That is, when used in an3®D quantizing
system, this dither incurs the least possible increase ineahtotal error variance of

any dither which eliminates input-dependent distortion ad noise modulation.

For 2RPDF dither with zero mean we know that
|
k
P — =0 8k 2 Zg
|

p@® L 0 8k 2 Z:

Also, P (u) must be equal to unity at u = 0 if it is to be a valid characteristic
function. We conclude that the dither cf and its rst derivative are completely
speci ed at all integer multiples of . According to the Generalized Sampling
Theorem [30], this is su cient to uniquely specifyP (u) for all uif P ( ) is -

bandlimited (i.e., if p is supported such thatp ( ) = 0 for j j > ). Since
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(right) for a quantizer using 2RPDF dither: (a) G™ (u) and E["jx] (both in
units of ), (b) G® (u) and E['2jx] (both in units of  2), () G® (u) and
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the triangular dither pdf of Eq. (4.49) is thus supported, and its corresponding cf

satis es all the given conditions, it must be the unique pdfn question.

It remains to be shown that any dither pdf which is non-zero aside of the
interval [ ; ] will produce a greater error variance. Since this variane is assumed
to be constant with respect to the input, it is su cient to show that this holds for a

single input value. We will do so for an input value of =2;i.e., forp,(x) = (x ).

For x = =2, the cpdf of the total error, pjx("; X), is shown in Fig. 4.6(a). It
consists of two equally weighted delta functions &t = =2 when 2RPDF dither
is employed. Use of a wider dither pdf will result in the appeance of more delta
functions in the error's cpdf, as shown in Fig. 4.6(b), wherere denote the weighting

of the delta function at" = (2i 1) =2,i> 0, by e , so that

. "w. = " i — 4+ . "4 i _
Pix -8 @ 1) +e; .
(4.50)
We proceed by expressing the fundamental condition that thmtegral of this pdf
must equal unity:
*»
(eeteq)+ (e+ej)=1: (4.51)
i=2
Now, by direct integration of Eq. (4.50), we compute the contional expectation

2
(@i 1)5 (e +ej)

E[%x = -]
i=1 . #
—4—2(e1+e1)+>%(2i 1) (e +eq) :

i=2

Substituting Eq. (4.51) yields
" #
2

r o
S1= 7 1+4 (i D(@+e);

i=2
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Figure 4.6: p-jx("; x) evaluated atx = =2 for systems using (a) a triangular-

pdf (2RPDF) dither of 2 LSB peak-to-peak amplitude and (b) a dither with
wider pdf (the delta functions possess the indicated weighhgs).
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which is always greater than 2=4 since thee ;'s must be non-negative and some

will be non-zero. We conclude the following:

Theorem 4.11 The choice of zero-mean non-subtractive dither pdf whichnaers
the rst and second moments of the total error independent dfie input, such that

the rst moment is zero and the second is minimized, is uniquend is 2RPDF.

Furthermore, it is easily shown from the Generalized Samplj Theorem that
the (n =2)-bandlimited non-subtractive dither cf which renders tle rst n moments
of the total error independent of the input is unique, and mustherefore be the cf
of an nRPDF dither.

The theorems of this chapter can also be applied to spectraitoloured dithers
(i.e., ones for which PSD(f ) is not a constant), but we will delay detailed investi-

gation of such dithers until Chapter 5.

4.4.4 Summary of Non-Subtractive Dither

The results of greatest practical importance concerning NIBquantizing systems

are reiterated below:

1. Non-subtractive dithering, unlike subtractive dithering, cannot render the to-
tal error statistically independent of the system input. It can render any
desired moments of the total error independent of the inputidtribution pro-
vided that certain conditions on the cf of the dither are met¢ee Theorem 4.7).
In particular, a dither of order n as de ned in Section 2.3, such asRPDF

dither, will render the rst n moments of the total error input independent.
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2. Non-subtractive dithering, unlike subtractive ditherng, cannot render total
error values separated in time statistically independentfoone another. It
can, however, regulate the joint moments of such errors. Famstance, it
can render the power spectrum of the total error signal whitésee discussion
following Eq. (4.39)).

3. Non-subtractive dithering can render any desired momesbf the system input
recoverable from those of the system output, provided thathe statistical
attributes of the dither are properly chosen (see Section442). This includes
joint moments of system inputs separated in time, so that thespectrum of

the input can be recovered from the spectrum of the output.

4. Proper non-subtractive dithering always results in a tal error variance greater
than 2=12 (see Eq. (4.30)).

5. 2RPDF (TPDF) dither incurs the least increase in the totalerror variance of
any non-subtractive dither which eliminates input-depenent distortion and

noise modulation.

Fig. 4.7 shows the results of a computer-simulated quantizan operation per-
formed upon a 1 kHz sine wave of 4.0 LSB peak-to-peak amplieidnd using iid
dither with the aforementioned triangular pdf. Shown are tle system input and
output, the total error, and the estimated power spectrum othe system output.
Note that vestiges of the input signal are clearly visible irthe total error wave-
form, indicating that the two signals arenot statistically independent. Also, the
time-waveform of the system output in Fig. 4.7(b) does not gually resemble a
sine wave plus an independent additive noise. Surprising @smay seem, listen-

ing experiments [21] show that the total error signal of Fig4.7(c) soundslike a
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Figure 4.7: Results from the computer-simulated
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gquantizaton of a 1 kHz

sine wave of 4.0 LSB peak-to-peak amplitude using 2RPDF nomsubtractive
dither. Shown are (a) the system input signal, (b) the systemoutput signal,
(c) the resulting total error signal, and (d) the power spectrum of the system
output signal (as estimated from sixty 50%-overlapping Ham-windowed 512-
point time records with an assumed sampling frequency of 44. kHz; 0 dB
represents a power spectral density of 2T=6 whereT is the sampling period).
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constant white noise, independent of the nature of the inpusignal (with which it
is indeed uncorrelated), and that the signal shown in Fig. 4(b) sounds identical
to a noisy sine wave. Indeed, the estimated power spectrumtbe system output
in Fig. 4.7(d) exhibits no distortion components and indictes that the total er-
ror is spectrally white. These results should be compared with tse in Figs. 4.1
and 4.3, which illustrate the results of quantizing a sine we using undithered and
SD systems, respectively. In particular, it should be notethat the noise oor in
Fig. 4.7(d) is up by 4.8 dB relative to that of Fig. 4.3(d) due b the tripling of the

noise spectral density in accordance with Eq. (4.47).

In audio applications, the PSD of the total error is perceptally meaningful and
should be input independent. In particular the error shouldhave zero mean, and
noise modulation(i.e., variation in the second error moment) should be elimated,
so that a dither of at least second order should be used. In i@ processing, some
evidence exists [13] that the third moment of the total erromay be perceptually
relevant and should perhaps be controlled by using third oett dither. In instuments
measuring parameters which depend on higher statistical ments, still higher

order dithers may be appropriate.

Some speci c comment is required concerning the special ne¢ ofrequantization.
In a purely digital system, random processes exhibiting theontinuous pdf's de-
scribed in this section are not, strictly speaking, availde since not all real numbers
are representable using a nite number of binary digits. Indct, digital dither pdf's
of necessity resemble discretized or \sampled" versions thfe continuous pdf's
(rectangular, triangular, etc.) described above. It is notmmediately obvious that
such dithers will retain the desirable properties of their malogue counterparts with

respect to rendering total error moments independent of theystem input. It is
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rigorously proven in Chapter 6 that such dithersdo indeedretain these properties,

and empirical evidence corroborating this conclusion mayelfound in [16].

The question has been posed [41, 42] as to the extent to whidual-time esti-
mation of attributes of dithered quantizing systems proceits in the same fashion
as for signals with additive iid random noise processes. Riesms interested in the
similarity of the two cases are referred to the treatment ofttis question provided

in Appendix B.

4.5 Summary of Statistical Relationships Between

Signals

Fig. 4.8 indicates the statistical dependences between thignals indicated in Fig. 2.1
with and without the application of a rst or higher order dit her and under the
assumption that that and x are statistically independent processes. Signals not
rendered independent of one another by a rst order dither & not so rendered
by the use of higher order dithers. All entries in the charts are arrived at by
inspecting the relevant joint cf's to determine whether a pdicular choice of dither

cf would allow them to be written as a product. For instance, let us consider NSD
systems and take, by way of example, the pair of signagsand . Can these random

variables ever be statistically independent in an NSD syst&?

3We point out that w® and y are identical in NSD systems (see Fig. 2.1), as argand " in SD

systems, so that the corresponding entries in the charts aréentical.
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Figure 4.8: Statistical dependences between signals in Shhd NSD quantiz-
ing systems where the dither and input signals are assumed tbe statistically
independent. (n refers to the order of the applied dither.)
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Setting all unwanted variables to zero and simplifying Eq.3.8), we see that
! !

. k k k
Pg:(Ugs u-) = sinc ug+u — Py u —; —
k=1

Now, since the sum ofuy and u- occurs in the argument of the non-linear sinc
function, it is clear that this expression can never be splinto a product of a func-
tion involving uq alone with one involvingu- alone. Hence these random variables
can never be statistically independent. This is obviouslyrtie for any other pair of
random variables whose Fourier transform variables occuogether in a function

argument in Eqg. (3.8).

Now consider the pair of random variable$ and x, and let us suppose that
and x are statistically independent. The proof of Theorem 4.6 deomstrates that no
choice of dither statistics can rendet and x statistically independent for arbitrarily
distributed inputs. A similar conclusion is reached for thesignal pairs @; ) and
(9;w), although it can be shown that each of these pairs of randonrgresses can

be rendereduncorrelated by an appropriate choice of dither (see below).

We are left with only two signal pairs which might potentially be independent.
These are (I;X) and (;x). is independent ofx since we have speci ed that this
is the case. Then Theorem 4.4 indicates thaj and x are statistically independent

if and only if
P — =0 8k 2 Zy;

l.e., if a dither of order at least one is used. Combining allfdhe above consid-
erations and conducting a similar analysis for SD systemsl@is construction of

Fig. 4.8.

At the risk of belabouring the point, we observe thatq is statistically inde-

pendent ofx in both SD and NSD systems if a rst order dither is used. Thisd
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especially good news in SD systems because the quantizagoror, g, and the total
error of the system,”, are identical. In NSD systems this is not true, however, and
the total error is never statistically independent of the input for arbitrary input
distributions. As we have seen, however, certaimoments of the total error in an

NSD system can be rendered independent of the system inpustlibution.

Fig. 4.9 indicates the correlation between various signaigith di erent orders
of dither assuming that and x are statistically independent. The charts were
constructed by explicitly di erentiating the relevant joint cf's and inspecting the
results for conditions on the dither cf's which would rendethe corresponding ran-
dom variables uncorrelated. As an example, considérand in an SD system. We

are interested in conditions under which
E[" ]=E['IE[ |

From Eq. (3.7) we have

*
P.. (u;u)= sinc u- K P u K Py K
k=1
so that
4 j 2
E['] = 5 PIY00)
- 2 )4 | kI |
= 21— sinc® pw P, - (4.52)
k=1
Furthermore,
| | |
@ ! ! !
P.(u) = sinc u- 5 P 5 Py 5
k=1
so that
Er] ¢ L PO
2 | | |
- ! ! !
- 21_ snd® T p  Z op = (4.53)
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Figure 4.9: Statistical correlations between signals in SCand NSD quantizing
systems where the dither and input signals are assumed to bedaistically
independent. (n refers to the order of the applied dither.)
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Now, if
!

piy K _ 0; 8k2Zy8i2f0;1g; (4.54)

then Eqgs. (4.52) and (4.53) both reduce to zero so that
E[" 1= E['E[ ]=0:

(The derivative of the sinc function vanishes at the originthereby taking care of the
k =0 case.) Thus,” and are both uncorrelated and orthogonal. This analysis was
repeated for all pairs of signals that were of interest in batSD and NSD systems

in order to generate Fig. 4.9.

If the assumption is made thatE[ ] = 0 then this chart can be taken to indicate
orthogonality as well as uncorrelatedness, in which casedan be used to deduce
the variances of signals of interest. For instance, note froFig. 2.1 that in an NSD

system

E["?

E[( + 97
E[ *]+2E[q]+ E[S]:

From Fig. 4.9 we see thaE[ q] = 0 if a zero mean dither of second or higher order

is used. In this case, usingE[f] = 2=12 we obtain

2
E[?)= E[ 2+ -

which is precisely Eq. (4.30). Furthermore, in such a systeme can go on to write

El? = Elx+")

= E[X?]+2E[X"]+ E["?]
= ENXT+E[ ]+ 1—;;
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where we have noted from Fig. 4.9 thaE[x"] = O for zero mean dithers of order
n 1. Note that in order to substitute for E["?], however, we require that the
dither be of ordern 2. Indeed, E["?] is not independent of the system input
otherwise. It should be observed that the expression obtad in this manner is

identical to Eq. (4.44).

It turns out that this approach can be used to deduce the varizce of any signal
in an SD or NSD system in terms of the variances of, and q provided an

appropriate dither is in use.



Chapter 5

Coloured Errors and

Multi-Channel Systems

This chapter will consider four topics related to discretéime dithered quantizing
systems: the use of spectrally coloured (i.e., non-white)tder signals, dither in
systems using noise-shaping error feedback, the raw erréaa SD system, and the

e cient generation of multi-channel dither signals.

5.1 Spectrally Shaped Dithers

We now proceed to apply the analysis of the last chapter to arige family of wide-
sense stationary but spectrally-shaped (i.e., non-whitajither signals of practical

interest [25]. We will consider the family of dithers whose-th sample can be

95
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(@)

(o)

) @ ©

Figure 5.1: Schematic of a dither generator for producing spctrally shaped
dithers.

written as
n = ' G ni (5-1)

where the i's are iid so that together they represent a strict-sense gtanary ran-
dom process, . It will be tacitly assumed that ¢ = 0 for i < 0, so that corre-
sponds to the output of a causal non-recursivdither Iter , G, of the form
* .
G(z2) = cz'
i=0
with  as its input (see Fig. 5.1). is also assumed to be statistically independent

of the system inputx, so that is as well. We will hereafter refer to such a dither

as a ltered dither.

The objective is to nd conditions such that dithers in this particular family

will render the total error spectrum independent of the sy&m input in a dithered
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quantizing system. That is, we require thatE["?] and E[",",] are constant so that
the autocorrelation function of the total error is input independent. We proceed
by nding the characteristic functions required in order touse the theorems given

in Chapter 4.

We begin by de ning the vectors

é( Coo1 o0 1iih)
and

é( soo1 0 1i0)
Now we write the joint pdf

GG) 2 piGop()
p; (; = Pj ’Op 1
) ps
= @, G iAp(j):
j= 1 i= 1

Here we have used the facts that; is completely determined by choosing the;'s
and that the ;'s are iid so that their joint pdf splits into a product of idertical

functions which we will simply denote byp ; i.e.,
p, p 8k

To obtain the associated cf, we now Fourier transform all vaables. The transform
variable corresponding to ; will be u; and that corresponding to ; will be w;,

where, as above, we will form real vectora and w from these components for
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notational convenience.

0 1
Zl

\'4 ) ® o
P. (uw) = exp@ j2u; G Ap (e’ Mdy
j=1 1 i=1
¥ Z1 ¥ . .
- e]zujcij ip(j)ejz jodj

= ¥ e i2cj iy ip(i)ejz wig
' 0’ 1
*
= P @\Ni + CJ inA: (52)
i= 1 i=1
Settingw; =0 8i andu; =0 8 6 n we directly obtain the cf we require:
A4
P (un) = P (Ch iun):
i=1
Since is strict-sense stationary, we will drop the unneeded timedex n and re-
index the C's:
V4
P (u) = P (gu): (5.3)
i=1
Also, by setting to zero all of thew;'s and all of the u;'s except foru, and un.-

(which we relabelu; and uy), Eq. (5.2) yields

P (C, iup+ Chs jUp)

P .. .. (ug;up)

P (Gui+ Gs+ Uy): (5.4)
i=1

Di erentiation of Eqgs. (5.3) and (5.4) and making the simplfying assumption that
E[ ]=0 gives
. o R
r()=E[T ggG+
j:

1

and
8 9
< R X R =
PSD (f)=2TE] 2]: ¢ +2 GG+ COS(2'TF ). : (5.5)

j=1 ‘:lj:l
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5.1.1 Filtered Dithers in NSD Systems

We return to Theorem 4.8 in order to see what demands it placagpon the cf's
derived above. We begin with the case of the error meam(= 1), which entails

the requirement that
!

k
P = =0 8k2Z (5.6)

in order that this quantity be independent of the input and gven by Eq. (4.29).
Clearly, this condition will be satis ed by the dither of Eg. (5.3) if and only if for
eachk 2 Z, there exists at least one value af such that:

k
P ¢— =0:

Requiring that the error variance be input independent intoduces an additional

constraint:
p@ L =0 8k 2 Zo:

From Eq. (5.3) we have
| | |
! 2 - !
p® K = ij(l) G E P Cih . (5.7)
j=1 i:'él'
i6]

This expression will go to zero at the required locations ibf eachk 2 Z, either

1. there exists ani such that

and |
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or

2. there exist two distinct values ofi such that

so that, although terms occur in Eq. (5.7) in which either onef these two
functions alone will be di erentiated, in any given term onewill be undi er-

entiated and will cause the respective term to vanish in theequired places.

We now proceed to address the question of what conditions ens that a spec-
trally shaped dither will render the total error spectrum irput independent. As
usual, we approach the question by investigating correlatns between errors sep-

arated in time; e.g.,E[",,"n,]. To apply Theorem 4.9 we usé® .. .. as given by

Eq. (5.4). We proceed by treating separately the three cortebns required by the

theorem.

Condition | (Eq. (4.36)) is satis ed for all lags™ 2 Z, if and only if 8(k; k») 2 Z3

and 8 2 Z, there exists ani such that
|

k k
P ¢ -1 + G+ e 0:
Note that if this equation holds, then Eq. (5.6) necessarilyiolds as well.

Proceeding to Condition Il (Eq. (4.37)) we have:
! !
O = )a- (‘;]+P(1) C] ﬁ
j=1 i=1
i6]

!
ks G

p(O;l) P ¢—

n, n+’

All terms in this sum will go to zero at the required locations8™ 2 Z, under the

same condition that we found for constancy of the error variece above; that is, we
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require 8k 2 Z, that either P (k=) =0 and PW®W(ck=) =0 for some value of

I, or P (k=) =0 for any two values of 1i.

Condition 11l (Eq. (4.38)) is symmetric with Condition Il an d yields the same

conditions on the cf of .

Collecting the above conditions yields the following set «fu cient conditions

for the error spectrum to be constant and input independent:

Theorem 5.1 In an NSD quantizing system using ltered dither the total eor will
be wide-sense stationary and independent of the system inpoder the following

conditions:

1. 8(kyky) 2 Z% and for each™ 2 Z, there exists ani such that
|

P qﬁ+ mﬁ =0; (5.8)

and
2. for eachk 2 Z,, either there exists a value of such that
P ¢— =0 (5.9)
and

PO ¢— =0; (5.10)

P ¢— =0: (5.11)
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Subject to the conditions of the theorem, we have
8
.  E['Z; C=0;
El'n"n+] = S )
E[ n n+]; otherwise.

so that
2

PSD-(f) =PSD (f)+ (5.12)
The conditions in the Theorem 5.1 are su cient but not necesay, with more
complicated and general conditions probably existing. Inpgte of this, the condi-
tions of this theorem are so general as to be di cult to use, buthey are the form
required for certain pdf's (see [43]). Here, let us interpret them in the common

case where represents a strict-sense stationargnRPDF random process.

If the 's are iid andmRPDF, then Condition 1 of Theorem 5.1 will be satis ed
8(ki; kp) 2 Z% if for each™ 2 Z, there exists ani, call it ip, such that of ¢, and
C,+ One is zero and the other is a non-zero integer. To see why tigs note that
for an of this sort Eq. (5.8) involves

| |
k Ky . k Ky
P G—+ G — =sinc™ G,—+ Gps —
This equation must hold if both k; 6 0 and k, 6 O since the argument of the sinc
function will then be a non-zero integer multiple of £ under the above condition.
What happens in the case where, = 0 and k, = 0 (k; 6 0)? Then there exists

i1 = ig+ ~ such that Eqg. (5.8) holds and becomes
|

. k
sinc" cil—l =0:
A similar factor exists if ¢+~ = 0 and k; = 0 (k; 6 0). Hence for each pair

(ki;kz) 2 Z3 there exists, under the stated condition, ari such that Eq. (5.8)
holds.
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What does Condition 2 of Theorem 5.1 entail when is mRPDF with m  1?
In such a case, we see that the existence of two distingts with values which are
non-zero integers is su cient to satisfy the requirement ofeq. (5.11). If, on the
other hand, is mRPDF with m 2 then it is su cient that one non-zero integral
G exist to satisfy the requirements of both Eq. (5.9) and Eq. (80). For instance,
the cf of a 2RPDF process,

P (u) = sinc? (u);

goes to zero au = ¢k= ;8k 2 Zy if G 2 Zo, and so does its rst derivative.

We collect these conclusions into the following useful cdiary to Theorem 5.1.

Corollary 5.1 In an NSD quantizing system using ltered dither with being an
iid mRPDF random process, the total error will be wide-sense statary and in-
dependent of the system input with a PSD given by Eq. (5.12)den the following

conditions:

1. for each™ 2 Z, there exists ani such that ofc; and ¢.- one is zero and the

other is a non-zero integer,

and

2. either is MRPDF with m 1 and there exist at least two distinct values of
I such thatc is a non-zero integer, or is mMRPDF with m 2 and there

exists at least one value df such thatc is a non-zero integer.

Note that the above conditions are su cient but not necessar. On the other hand,
Eq. (5.4) reveals that a necessary (butot su cient) condition is that there must

exist at least one value of such that ¢ is a non-zero integer.
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Consider a system with a stationary RPDF signal. What sets of dither Iter
coe cients satisfy the above conditions? Obviously, the rguirements are met by
the dither lter coe cients

f1, 1g;

(where we have omitted the in nite sequences of zeros preaagl and following the
coe cients shown). This coe cient set is associated with a dther whose spectrum

has a simple highpass form, as given by Eq. (5.5):

2

PSD (f) = T f1 cos(2Tf )g:

Also, the coe cient sequences

1 1
1 1;? E ;
1 1
é; é;l; 1 ;
1 1
1 5;1, > ;
1 1
é’ 1;2; 1 ;
11
1 é;é; 1 ;
1 1
1 E;O;E; 1 ;

all satisfy the requirements. Fig. 5.2 is in agreement withhis conclusion. It shows
the output error spectrum from a system using the fourth in tis list of dithers
with a null system input, as well as that error spectrum normbezed by the error

PSD as predicted by Eq. (5.12) for a properly dithered system The result of the

LAll power spectra shown in this chapter represent the averag of 12000 256-point FFT's
of 50%-overlapping Hann-windowed data generated by compuar-simulated quantization. 0 dB
represents the PSD of a random process whose values are RPDRduiid; i.e., 0 dB represents

2T=6.
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Figure 5.2: PSD (f) for a NSD quantizing system and using a dither lter
with RPDF input, , and coe cients f0.5,-1.0,0.5,-1.¢. The system was
presented with a static null input (0.0 LSB). (a) Observed PSD, (b) observed
PSD normalized by expected PSD.

normalization is at, indicating that the spectrum is of the expected shape. On the

other hand,
1 1
5 L1 5
2 2
does not meet Part 1 of the condition for = 1. Fig. 5.3 shows the error spectrum

from a system using this sort of dither with a null system inpyy along with that
spectrum normalized by Eq. (5.12). The results of the normiakation are not at,

indicating that the error spectrum is not of the sort prediced.

As a nal note, we observe that in NSD systems we cannot genégaarbitrary
total error spectra by varying the dither spectrum, since Eq(5.12) indicates that
an additive white noise component will always be present. Ehare many appli-
cations where more complete control of the error spectrum desirable, and this
may be achieved using noise-shaping error feedback (seetiSed.2). Spectrally
shaped dithers remain of interest in certain applicationdjowever (see Section 5.3).

Furthermore, they are useful in high speed applications wre it is prohibitively



CHAPTER 5. COLOURED ERRORS AND MULTI-CHANNEL SYSTEMS 106

12.0 T T T T 2.0

15

10

Normalized PSD [dB]

Unnormalized PSD [dB]

-1.5

-2.0

. . . . 20 . . . .
0 5 10 15 20 0 5 10 15 20
Frequency [kHz] Frequency [kHz]

() (b)

Figure 5.3: PSD (f) for an NSD quantizing system using a dither Iter with
RPDF input, , and coe cients f0.5,-1.0,1.0,-0.5. The system was presented
with a static null input (0.0 LSB). (a) Observed PSD, (b) observed PSD
normalized by expected PSD.

time-consuming to generatenRPDF dither using n newly calculated random num-
bers per data sample. In such cases, a single newnay be generated per sample
and placed in a delay line to generate spectrally shaped déhof the sort described
by Eq. (5.1). A commonly used example is the simple highpasgher mentioned

above, which may be generated using dither Iter coe cients
f1, 1g

Such dither is 2RPDF, but only one new random number is calcated per sampling

period.

5.1.2 Filtered Dithers in SD Systems

Let us compare the above results for NSD systems with analagoones for SD
systems. We require only that Eq. (4.18) be satis ed. This ithe same requirement

as imposed by Eq. (4.36) and so leads directly to the followgrtheorem:
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Theorem 5.2 In an SD quantizing system using lItered dither, the total eor will
be strict-sense stationary with its PSD given by

27

PSD. =
6

(5.13)

if and only if for each pair (ki; kz) 2 Z3 and for each™ 2 Z, there exists ani such
that |

k Ky
P Cl_l+C|+_2 =0:

The condition here is, of course, just the rst condition of heorem 5.1.

Again, conditions speci cally for nRPDF 's can be derived. Note that the
condition of the following corollary to Theorem 5.2 is presely the rst condition

of Corollary 5.1.

Corollary 5.2 In an SD quantizing system using Itered dither with being an iid
NRPDF random process, the total error will be wide-sense statary and indepen-
dent of the system input with a PSD given by Eq. (5.13) if for ea” 2 Z, there

exists ani such that ofg and ¢~ one is zero and the other is a non-zero integer.

Of course, there exist Iter coe cient sequencesf ¢ g, which satisfy the condi-
tions of Corollary 5.2 without satisfying those of Corollay 5.1. That is to say that
just because ltered dither is suitable for an SD system doesot imply that it is
suitable for an NSD system. One example is

1
—1
2!

which is certainly not a suitable dither for an NSD system. Fj. 5.4, however,
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Figure 5.4: PSD (f) for an SD quantizing system using a dither Iter with
RPDF input, , and coe cients f0:5;1g. The system had a hominal sampling

rate of 44.1 kHz and was presented with a static null input.

2.0
15
10 ¢

o

S

[a)

n

o
10 F
15 |
-2.0

0 5 10 15 20
Frequency [kHz]
Figure 5.5: PSD (f) for an SD quantizing system using a dither Iter with

RPDF input, , and coe cients f0:5;1;0:59. The system had a nominal
sampling rate of 44.1 kHz and was presented with a static nulinput.
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shows PSD(f ) as calculated from a computer simulation of an SD system ug)
this dither. It is at as expected. On the other hand, Fig. 5.5shows the error
spectrum from a simulated SD system using a dither with Itercoe cient sequence
1.1
—: 1’ _
272
This sequence does not satisfy the conditions of Corollary?5and the corresponding

error spectrum is not at.

In light of the fact that the total error " = q of an SD system is spectrally at
irrespective of the spectral shape of the dither, the readenay wonder why one
would ever bother using a spectrally shaped dither, or inddeany dither other than
simple iid (white) RPDF, in such a system. We will see in Sean 5.3 that this
may be desirable if the output of an SD system with noise-shiag error feedback
will sometimes be played back without subtraction of the dher, in which case the

resulting error signalwill be spectrally shaped if a non-white dither is used.

5.2 Dithered Noise-Shaping Quantizing Systems

The use of noise-shaping error feedback in quantizing sysie is a powerful tech-
nique which allows the total error alone to be spectrally siped in a fashion de-
termined by the system designer without a ecting the signal For instance, in an
audio system it may be preferable to shape the quantizationrrer such that most
of its power resides in high frequency bands where the humaaraes relatively in-
sensitive. (A considerable decrease in the perceived noieeel is possible even in

systems operating at commercial audio sampling rates [44]9

Fig. 5.6 shows a schematic for a dithered quantizing systemtlwnoise-shaping
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Figure 5.6: Schematic of a generalized dithered quantizingystem using noise-
shaping error feedback. Shown are theshaped total error, e, of the system
and also itsraw error, (discussed in Section 5.3).

error feedback. Note that only the total error" of the quantization operation is
fed back. The e ect of the feedback IterH (z) on the shaped total error e, can be
assessed by expressing tlzetransform of the system output,y(z), in two di erent

ways [45]:

xY2) + &(2)
x2) H@"@+ "(2):

y(2)

y(2)
Subtraction yields
ez)=[1 H@I"(2)

where g(z) and "(z) are the z-transforms of the signalse and ", respectively, and

where H (z) is the transfer function of the noise-shaping Iter. Hencethe power
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spectrum ofe is given by [31]
PSD.(f)= 1 H(&2™ ) °PSD.(f); (5.14)

whereH (217 ) represents the frequency response of the noise-shapingr| H (2).
This Iter always includes oneimplicit delay element which prevents the current
error from being subtracted from the current input. We note hat PSD-(f ) may
itself be shaped, its form being determined by whether the stem is NSD (see
Eq. (4.39)) or SD (see Eq. (4.20)) and whether or not is spectrally shaped.

The use of noise shaping complicates the analysis of the erstatistics. The
reason for this is thatx and will not be statistically independent if a Itered
dither generator of the sort shown in Fig. 5.1 is used. Cong&d for instance the

case where H(z) is a simple delay element
Hiz)=z "%

Using subscripts to denote the temporal order of the quant#s involved, we note
that the input sample x,, contains vestiges of , ; arriving via the feedback path,
and that in general this signal is also present in,. The theorems given above
cannot be applied in this situation because they all assumedependence ok and

. Under these circumstances, Eg. (5.14) holds but we cannat bertain of the form
or even the constancy of PSHf ). Fortunately, the theorems can be generalized to

handle the case at hand.
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5.2.1 NSD Noise Shaping Systems

We begin with NSD systems and the derivation of results anajous to Theorems 4.8
and 4.9. Eq. (3.8) yields

o Kk k k
P.(u) = sinc u» — Pyx u —; —
k=1
Thus
4 i "
= I ()
2 ! !
= J_ X m Sindm) 5 |:)()’(’rI r,0) 5’5 :
2 k=1 r=0 [ ’

In this case we have by analogy with Theorem 4.8:

Lemma 5.1 In an NSD quantizing system in which the dither,, and system input
signal, x, are not necessarily statistically independent[" ] is independent of the
distribution of the inputx for ~ =1;2;::: ;N if and only if the joint characteristic
function of the dither and the input,P  (u; V), obeys the condition that
|
p?)i(:O) 5’5 =0
(5.15)
8k2Zy, and i=0;12;:::;N 1

Subject to the conditions of Lemma 5.1E["M]forO m N is given by Eq. (4.31),

as before.

The derivation of P., in terms of the ;'s proceeds precisely as for the case

wherex is not involved, and we simply state the result:

P.x (Uuw;v)= Py (;Vv); (5.16)
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where

X=(110X 13Xy X1 100);
and where

V=(:105V Vo Ve i)

is the corresponding vector of Fourier transformed variabg. is a similar vector
with components

=Wt G iuj:
By setting all the unwanted variables in Eg. (5.16) to zero webtain:
P e (UnsVn) = P (5Va); (5.17)
where the components of are
i = G iln

and where we will retain the time indices since the relativarnes of ; and x, must
be taken into account. (Note that if the 's are all mutually independent and we

let v, =0, then Eq. (5.17) reduces to Eq. (5.3).)

In order for the mean and variance of the error to be input indeendent,

Lemma 5.1 requires that:

Poxa —; =0 8k2Zg (5.18)
and

p 0 : =0 8k2Zpy (5.19)

At rst glance, interpretation of these conditions in termsof Eq. (5.17) appears to

be frustrated by the fact that we know nothing about the quanity P .., . However,
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we can assume that (a) the dither lter is causal so that; =0 8i < 0, and that (b)

i Is statistically independent of the random vector :(:: ; X, 2;Xn 1;Xn) fOori n,
where we recall that the dither Iter, H(z), must contain an implicit single-sample
delay. Thus there exists exactly one value afsuch that ¢ 6 0 and for which ; is
statistically independent ofx,,. This isi = n, so that Eq. (5.17) can be written as

the product

P n;iXn (Coun;Vn) =P n(COUn)P;x n( O;Vn):

where

We conclude that Eg. (5.18) holds if

P coE =0 8k2Zg; (5.20)

and similarly that Eq. (5.19) holds if

|
!
PO ¢— =0 8k2Zgy (5.21)
The analysis of the 2-D statistics proceeds in the usual fash. We state without

proof the obvious generalization of Theorem 4.9.

Lemma 5.2 Consider two values,", and "+, of the total error produced by an
NSD quantizing system in which the dither and the input to thguantizing system
are not necessarily statistically independent. Let theserer samples be separated
intime by = "T whereT is the sampling period of the system andé 0. Denote

by P .. 1. ):xexa. ) the joint cf of the dither and input values, ,, n+, X5, and
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Xn+*, corresponding to", and ",.-, respectively. If and only if

ki k, ki k
Pl me i) 5= = 0 8(kesko) 2 Z3 (5.22)
|
(0;1,0:0) Ki . K1 _
P(n;n+\);(xn;xn+‘) —0,—0 =0 8k2Z (5.23)

o0 k k
p (L:0:0:0) 0.22:0,22 = 0 8ky2 Z (5.24)

(n; n+);(XnXn+)

then

El"n"n+]1= E[ n ne]:

From Eg. (5.16) we have

Pl ne)ixnixns ) (U1 U2; V3 V2) = P ixa, ) (5 V 15 Vo) (5.25)

where

i = Ch jUr+ Che jU2:
We rst consider the case where > 0. Using the same brand of reasoning that
we used in the 1-D case, we note that there exists exactly onalwe ofi for which
(Ch i;Ch+: i) 8 (0;0) and for which ; is statistically independent of &n;Xn++).
Thisisi = n+ 7, so that Eq. (5.25) can be written

Pl ne)ixnixns ) (U1 U2; Vi3 Vo) = P (GoU2) P (i ) ( % vi; Vo)

(5.26)
where onlyc, remains since the other coe cient is zero, and where
8
ol S hi<n
0=

> . N
-0 1 n+
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According to Eq. (5.26), Condition | (Eg. (5.22)) of Lemma 2 will be satis ed
for > 0andk, 2 Z if |
P coE =0 8k2 Z:

On the other hand, ifk, = 0, then Egs. (5.22) and (5.25) yield
! !

k ki k
PCni e )itxnxns ) =100 = P x 0= (5.27)

n .
where

2= ¢y juy:
Then there exists exactly one such thatc, ; 6 0 and for which ; is independent
of X,. This isi = n. Thus the right-hand side of Eq. (5.27) splits into a product
which goes to zero if |

k
P c— =0 8k2Z

Thus Condition | is satis ed for all (ki;k2) 2 Z3 subject to this requirement. By

symmetry, the " < 0 case produces identical conditions.

Conditions 1l and 11l (Egs. (5.23) and (5.24)) are handled byapplication of
the product rule as before. We omit the details, but it can belown that these
conditions are satis ed if Egs. (5.20) and (5.21) hold. All hree conditions being

satis ed, Eq. (4.39) gives the total error spectrum in termf the dither spectrum.
We collect below the conclusions from the above analysis.
Theorem 5.3 In an NSD quantizing system with arbitrary noise-shaping er

feedback and using Itered dither of the form described by .H§.1), the total error

will be wide-sense stationary and independent of the systemput with a PSD given
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by

o

PSD.(f)= 1 H(e2™ ) PSD (f)+ (5.28)

under the following conditions:
k
P c— =0 8k22Z

and !
p@ %5-:0 8k 2 Zo:

If is mMRPDF we reach the simple but quite restrictive conclusion tht:

Corollary 5.3 In an NSD quantizing system with arbitrary noise-shaping er
feedback and using lItered dither with being an iid mMRPDF random process, the
total error will be wide-sense stationary and independent the system input with

a PSD given by Eq (5.28) i, is a non-zero integer andn 2,

To appreciate just how restrictive this condition really is it should be noted
that it is not satis ed by simple highpass dither formed fromthe di erence of two
successive samples of an RPDF random process. This is coreanby Fig. 5.7
which shows the spectrum of from a noise shaper using this kind of dither and
a one tap feedback Iter with coe cient 0:5. (Of course, the PSIXf ) will have
the expected form given by Eq. (5.28) if and only if PSEf ) has the form given by
Eq. (5.12); i.e., the sum of the dither spectrum and that of a tite noise process.)
Also shown is the spectrum normalized by the predicted speatn of Eq. (5.12).

Two static inputs (x = 0:0 and 0.5 LSB, respectively) were used. The normalized
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Figure 5.7: PSD (f ) for an NSD quantizing system with error feedback and
using a dither Iter with RPDF input and coe cients f1.0,-1.03. A single-

tap noise-shaping Iter with coe cient  0:5 was used. (a) Observed PSD for
0.0 LSB input, (b) observed PSD normalized by expected PSD f00.0 LSB

input, (c) observed PSD for 0.5 LSB input, (d) observed PSD nomalized by

expected PSD for 0.5 LSB input.
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spectra are not at, indicating that the error spectra are nt of the expected shape.
Furthermore, the two spectra are di erent, indicating that the error spectrum is

input dependent.

These e ects decrease in size with increasing gain and coewty of the noise-
shaping lter, since the quantizer input then begins to resable the sum of the
system input with a large weakly-correlated Gaussian noisghich will act as a
suitable dither signal. For instance, the plots in Fig. 5.8 @respond to those in
Fig. 5.7 with the sole di erence being the use of a 3-coe cigmoise-shaping lter
with psychoacoustically optimized coe cients (refer to [4]). Although some varia-

tion of the spectrum with input is probably still present, it is apparently negligible.

5.2.2 SD Noise Shaping Systems

The analysis of SD systems with noise-shaping feedback ixineThe straightfor-

ward generalization of Eq. (4.18), o ered without proof, is

|
ki Ko ki ko
P =222 =0 8(k1; k) 2 Z§: (5.29)
This, however, is the same condition as Eq. (5.22), and thusdds immediately to

the following theorem:

Theorem 5.4 In an SD system with arbitrary noise-shaping error feedbacnd
using Itered dither of the form described by Eq. (5.1), theotal error will be wide-

sense stationary and independent of the system input with &P given by

2
PSDL(f)= 1 H(2M )21

. (5.30)
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Figure 5.8: PSD (f ) for an NSD quantizing system with error feedback and
using a dither Iter with RPDF input and coe cients f1.0,-1.03. A 3-tap
FIR noise-shaping Iter with coe cients f1:33; 0:73;0:0653 was used. (a)
Observed PSD for 0.0 LSB input, (b) observed PSD normalized ¥ expected
PSD for 0.0 LSB input, (c) observed PSD for 0.5 LSB input, (d) dbserved
PSD normalized by expected PSD for 0.5 LSB input.
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under the following condition:

P CoE =0 8k2 Z:

Corollary 5.4 In an SD quantizing system with arbitrary noise-shaping er feed-
back and using Itered dither with being an iidmRPDF random process, the total
error will be wide-sense stationary and independent of thgsgem input with a PSD

given by Eq (5.30) ifcy is a non-zero integer andn 1.

This latter is a weaker restriction than for NSD systems, insfar asm 2 is required

for the satisfaction of Theorem 5.3 (see Corollary 5.3).

A practical point regarding the implementation of SD systers with noise shap-
ing should be made. Subtraction of the dither obviously musbccur when the
signal is replayed, because the point of quantizing is to test the resolution of
transmitted/stored data to , and the dither signal will hav e ner resolution than
this. Hence, the signal transmitted or stored is noy but w° (see Fig. 5.6). The
dither must be either transmitted/stored along with the sighal or regenerated so
that it can be subtracted at playback, but the dither must al® be subtracted from
wP before transmission/storage in order to calculate the totaerror " to be fed back
through H (z).

5.2.3 Results For Special Classes of Shapers

Although we have so far been unable to nd weaker su cient coditions than

those given in the theorems above, which guarantee input iedendence of the



CHAPTER 5. COLOURED ERRORS AND MULTI-CHANNEL SYSTEMS 122

X 1HE) 1 Q 1-H@) y

Figure 5.9: A system equivalent to that of Fig. 5.6 in the NSD @ase where all
the coe cients of the error-feedback Iter, H(z), are integers.

error spectrum for an arbitrary noise shaper, some interasg results are known for
certain special classes of shapers. Consider for instanceNSD system in which
the feedback Iter H(z) is FIR and its rst " coe cients are all zero. Then the total

error spectrum is wide-sense stationary and given by Eq. &B) if the conditions of
Theorem 5.1 are satis ed and the dither lter, G(z), is FIR with ¢ =0 for i > " .

This ensures thatx; contains no vestiges of any;'s which will also be present in
the current dither sample, i, so that x; and ; will be independent. An analogous

result exists for SD systems.

A remarkable result has been obtained for one important spiat class of NSD
noise shaper designs by Craven [46]. These shapers emplegliack Iters, H (z),
whose Iter coe cients are all integers. Craven has shown tht any such system
producesprecisely the same output as the system of Fig. 5.9, which employs no
feedback. (The e ective dither lter, 1 H(z), must be minimum phase for Fig. 5.9
to be realizable; i.e., it must be invertible.) This means tat for such noise shapers,
the broad class of shaped dithers satisfying only the conitihs of Theorem 5.1

must produce the expected, input-independent error spectra. This con rmed
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Figure 5.10: PSD(f); for an NSD quantizing system with error feedback
and using a dither Iter with RPDF input and coe cients f1.0,-1.03. The
system was presented with a null static input (0.0 LSB) and a ingle-tap
noise-shaping Iter with coe cient 1.0 was used. (a) Observed PSD, (b)
observed PSD normalized by expected PSD.

by Fig. 5.10 which shows error spectra, unnormalized and nmoalized, for such a
system using the simple highpass dither which failed when aedback Iter with

non-integer coe cients was used.

5.3 The Raw Error of SD Systems

Consider an SD quantizing system with noise-shaping erroeddback. It would be
nice to be able to play back the quantizer outputw® without subtraction of the
dither if, for instance, the playback system did not have falities for subtraction.

We will let  denote theraw error associated with the signa® where (see Fig. 5.6)

1>

0 0

w- X

= e+ :
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Using the z-transforms of the signals involved, we obtain

=01 H@I"@+ @;

where the possible presence of a noise-shaping feedbackr,ltH (z), has been as-

sumed.

Now if all samples of" were in general uncorrelated with all samples of, we
could conclude that the power spectrum associated with(z) was the sum of those
associated withe(z) = [1  H(2)]"(z) and (z), but this is not the case. We
anticipate that the dither signal will have to satisfy certan additional conditions
for this to be true. If H(z) 0 we see thatw?®is just the output of an NSD system,
so we require that the dither satisfy the conditions appropate to such a system
(see Theorem 5.3). IfH(z) 6 0, however, the properties of the error are not

apparent from the analysis conducted thus far.

We make the following observations:

E[ %] = Elle+ )7
= E[€]+2E[e ]+ E[ 7] (5.31)
E[ 1 2] = E[(er+ 1)(ex+ 2)]
= El[eie] + Efer o]+ E[e; 1]+ E[ 1 2] (5.32)
Let us write
1 H(2)= Xl h,z "

so that the i-th sample ofe can be expressed as
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We will consider the correlation between the-th sample ofe and the j -th sample
of . Wheni = | this quantity may be denoted byE["; ;1= E[" ]. Wheni 6 j

we will denoteE["; j] asE["1 »] (or, alternatively, as E[", 1]). Now

= #
E[a j] = E hn"i nj
n=1
X mn
= haE["i n j]
n=1
R
= hi mE["m j]: (533)
m=1

Let us consider the terms in this last sum without assuming,of now, that
and x are statistically independent. We will use Eq. (3.7) whichiges, forN =2,

! !
* * ' '

. Ko
P"l;"z; 1; 2(u"1; u-,,u ;u 2) = sinc u-;

ke .
= sinc w, -2
ki=1 kp=1

k
Pooxix, U, —u, —; —; —= : (534
Consider rst the m = j term in Eq. (5.33), and the following reduced form of

Eqg. (5.34) where we have writterP. . == P- :

P (u;u )= sinc u- K Px U 5; K
k=1
We see that
J 2
E['] = 5 PEYO0)
| |
o, ! !
= J_ * Sindl) 5 PF)](-’O) 5’ E
2 k=1

Thus E[" ]=0If

. k k
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On the other hand, ifm 6 j then from Eq. (5.34) we obtain
|

X Ky k
Pnl; Z(UIll; u 2) = sinc unl o P 1; 2,X1;X2 _11 u 2
ki=1
Now
.
E['12] = 5 P.LY(0;0) |
I R Ki (o0 Ki
T2 sinc™ - P(?;'lé?k?);xa —0;

ki=1

sothat E["; ,] =0 if

10 k k
P(O,l,O,O) _1, 0; _1, 0 =0 8kl 2 Zy:

1, 2;:X1,X2

A similar analysis reveals thatE[", ;] =0 if
|

00, ko ko
pooo  o2.022 - 8k, 2 Zo:

1, 2:X1,X2

ﬁ; 0 :
(5.36)
ﬁ; O. (5.37)
(5.38)
(5.39)

Hence if Egs. (5.35){(5.39) are satis ed for all time lags beeen”; and , then we

may state that
E['m j1=0  8(m;j):

In this case Eq. (5.33) indicates that
Ele ;=0  8(ij):
Then Egs. (5.31) and (5.32) become

E[ °]= E[e’]+ E[ ]

E[ 1 2] = Elei&] + E[ 1 2]

(5.40)

(5.41)
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Now, if Eqg. (5.29) is also satis ed, then" has a well-de ned autocorrelation

function and

2
T
PSD.(f) = ;
(f)= —
so that
i2ir 2 T
PSD,(f)= 1 H(¢ ) T:
In this case the input-independent autocorrelation functin of e is:
8
4 E[€]; " =0;

>

El[eie](7); otherwise.

Comparing this with Egs. (5.40) and (5.41), we conclude subgt to satisfaction of
Egs. (5.29), (5.35), (5.38) and (5.39) that

r¢)=re)+r ()
so that

PSD (f) = PSD(f ) + PSD (f):

Let us compare the additional requirements imposed above @m SD system
with the requirements typically imposed in an NSD system. $pose that Eq. (5.29)
holds. If Eq. (5.38) and Eg. (5.39) also hold then all the coniibns of Lemma 5.2
(i.e., Egs. (5.22){(5.24)) are satis ed. Furthermore, if K. (5.29) holds, then it
necessarily follows that

|
P x 55 =0 8k 2 Zy:
If Eg. (5.35) also holds, then the conditions of Lemma 5.1 €., Egs. (5.15)) are
satised for N = 2. We know, however, thatall of these conditions are satis ed

under the conditions of Theorem 5.3. Thus we can state the foling:
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Theorem 5.5 If the dither signal in an SD system, possibly using noiseaghing
error feedback, satis es the conditions of Theorem 5.3, thethe raw error will be
wide-sense stationary and independent of the system inputhwa PSD given by

. 2 27
PSD (f)= 1 H(€?™) —+ PSD (f): (5.42)

If we assume that and x are statistically independent (i.e.,H(z) 0 so that
no error feedback is present) then the conditions weaken tbhdse imposed to yield
Theorem 5.1, and Eq. (5.42) simpli es to yield Eq. (4.39). Tis is not surprising,

since, in the absence of feedback? is the output of an ordinary NSD system.

These results allow for spectral shaping of the raw error oha&SD system. Say
for instance that a highpass error spectrum is desired in aise shaping SD system
whether or not the dither is subtracted at playback. By usinga simple highpass

4RPDF dither, generated using a 2RPDF and a dither lter with coe cients
f1, 1g;

Theorem 5.3 will be satis ed. If a simple highpass noise-ghiag feedback lter,
H(z) = z 1, is used, then PSRX(f) and PSD (f) will both be highpass so that
PSD (f ) will be as well. This is conrmed by the spectra in Fig. 5.11 Wwich are
taken from a computer simulation of the described system. Mothat a lower total
noise power is still achieved by subtracting the dither at plyback. In units of

2=12 the variance ofe is 2 (the power gain of 1 H (z)) while that of is 6 (the
power gain of 1 H(z), plus the power of 2RPDF dither multiplied by the power
gain of the dither lIter). It should be noted that in accordance with the conditions

of Theorem 5.3, 1RPDF noise is not su cient to eliminate spectral modulation
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(indeed, if such dither is used in the system described aboamd x° 0, then
0).

5.4 Multi-Channel Dither Generation

When multiple channels olmRPDF dither are to be generated, the generation af
new RPDF pseudo-random values per channel per sample may e computa-
tionally burdensome. It is tempting to try to reuse computedrandom numbers in
di erent channels. For instance, Gerzon et al. [46] have ppmsed an e cient non-
subtractive dither generation scheme for stereo signals igh they call \diamond
dither". A schematic of the proposed generator is shown in i 5.12. Here ; and
o are iid, statistically independent of each other, and 1IRPDFThus ; and , are
iid and 2RPDF, but not statistically independent of each otler. In this design,
only two new 1RPDF pseudorandom numbers need to be generateach sampling
period, as opposed to four if statistically independent 2RPF dithers were to be

generated for each channel.

In general, interchannel sharing of random numbers for theupposes of dither
generation will introduce interchannel correlations beteen error signals. This inter-
channel error correlation may be undesirable in certain apipations. For instance,
such correlations may a ect the spatial image of the noise imulti-channel audio
signals. The remainder of this section is dedicated to the ssssment of such corre-
lations and to methods of eliminating them. Generalizatios of the Gerzon scheme
to e ciently produce multi-channel dithers with other pdf' s will be explored. (Only
NSD quantizing systems will be considered, since SD systeardy require one new

RPDF dither value per sample per channel anyway.)
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Figure 5.11: PSDy(f) and PSD (f) for an SD quantizing system with error
feedback and using a dither Iter with 2RPDF input and coe ci entsfl; 1g.
A simple highpass noise-shaping IterH (z) = z ! was used. The system had
a nominal sampling rate of 44.1 kHz and was presented with a stic null

input. (a) PSD(f), (b) PSD (f).
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Figure 5.12: E cient generation scheme for

The j's are iid and uniformly distributed.

>
n1:h1+h2

>
np=hy-hj

stereo non-subtactive dither.

hy —>
hy —»

hy——>

NxM Matrix
A = (aj)

— ny

Figure 5.13: E cient generation scheme for multi-channel non-subtractive
dither. The j's are assumed to be iid.

131
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Fig. 5.13 illustrates a generalized multi-channel dither gneration scheme. We

denote the output of the system by the random vector

where the superscripflT denotes matrix transposition. is assumed to be given by

the equation

where
=( 1 s )T

is a random vector with iid components and
A=(g)

is a constant reaIN M matrix. (It will be shown below that it is not possible to
generate more thanN uncorrelated random processes from combinations of only
N random processes, and thus we will assume th&  N.) The dither values
obtained are

X :

i = & j, i=1;2;:::;N:

j=1
We will assume that the ;'s are each iid random processes of the easily generated
1RPDF variety, and furthermore that they are statistically independent of one

another at any given instant in time.

We are interested in correlations between total errors in éirent channels. The-
orem 4.9 has thus far been applied to errors separated in tinme a single channel
system, but also applies directly to simultaneous errors idi erent channels (or

to any other pair of errors generated by identical NSD quargers). In order to
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use this theorem, we must rst nd P ,. ,. We begin by considering the statistical

relationship between two typical 's, say ; and ,. Now

¥
Py (1 20) = Puy (o2 ) p,(j)
0

0 T 1
M hd W
= @, ay A 2 ag A P, ()
=1 =1 =1
Performing the necessary Fourier transforms yields
Pl;z;(ul;uz;u): Pj(uj+aljul+a2ju2)
=1
whereu =(u,;u,;:::;u ). Then, settingu =0, we have
W
Pl;z(u 1;u2): . Pj(alju1+ aZjuz): (5-43)

j=1

By way of example, we consider the stereo dither scheme diga@d by Gerzon,

with its associated matrix 3

Here we have
P, ,(u,u,)=sinc(u,+u,)sinciu, u,);
the inverse Fourier transform of which is

1 +
p1;2(1;2):§ 122 122

As illustrated in Fig. 5.14, this pdf is supported on a diamod-shaped region in the

1 2-plane, giving rise to the denotation \diamond dither."
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g

Figure 5.14: The support of the \diamond dither" joint pdf, p ,. ,( 1; 2).

The interchannel dither correlation can now be calculatechithe usual fashion:

i 2
E[12 = o PUY00)

, XM
ajag E[ ]+ anag E[ ]E[ ;]
j=1 j=1li=1
i6]
Since is assumed to be iid 1RPDF, it has zero mean and a variance of=12. In
this case the above equation simpli es to give
2 M
E[ 1 2] = — alj azj: (544)
12,

If we require that interchannel error correlations be indegndent of the input
signal distribution, then we must ensure that the conditios of Theorem 4.9 are
satised. We will briey defer discussion of the requiremets placed upon the
matrix A by the conditions of this theorem, and proceed under the agsption

that they are satis ed. In this case

E["1"2] = E[ 1 2]
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Thus, in order to eliminate all interchannel error correlabns, we require that
E[i j]=0forall i;j suchthati 6 j. Eq. (5.44) indicates that this requirement is

simply that the coe cient vectors
f(aaizasii;am); 1=1;2:11,Ng

(i.e., the row vectors ofA) form a mutually orthogonal sef. Since we can only
have N orthogonal M -vectors if M N this implies that we cannot generate
more orthogonal dither processes than we employ indepenters. While matrices
meeting the orthogonality requirements are abundant, the dditional requirement
that the resulting dither be nRPDF for some givenn complicates matters. This
requires that the coe cient vectors each contain precisely entries equal to either

1 or 1 and that the remaining entries be zeros.

It turns out that if the the row vectors of A are mutually orthogonal, then the
conditions of Theorem 4.9 will be satis ed whenever the desd order of dither is
n 2. In order to demonstrate this we consider a typical pair ofither values, ;
and », and refer to Eq. (5.43). The rst condition of the theorem (E. (4.36)) is
that

bk 2V e ke ak so a2

Let us assume, for purposes of contradiction, that is RPDF and that the rows of
A are mutually orthogonal vectors consisting of element; 2 f 0;1; 1g, but that
the above condition does not hold. That is, there existk(; kz) = (k;; k,) 6 (0;0)

such that no term in the given product vanishes. Since the ters are sinc functions,

2This is not quite the same as saying thatA is anorthogonal matrix, which requires furthermore

that the matrix be square and that each of its rows has unit magqitude.
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this means that
2 3

a a L&
2 11 12 1M g:

K, ks 0 0::: 0

dp; Ao il oM
which would imply, in particular, that for all j1;j,2f1;2;:::;MQ,j1 6 |2,
2 3
g o M gs
a2j1 a2j2

ki k; 0 0 : (5.45)

However, since the rows oA are mutually orthogonal, there must exist at least
one pair (1;)2) such that Eqg. (5.45) has only the trivial solution K,;k,) = (0;0),

which provides a contradiction.

Again from Eq. (5.44) we have

|
P ¢ X kp W k
POY 220 =7 ayP® a;— P ay—

j=1 i=1

i6]
This expression goes to zero for all; 2 Zy, so that the second condition of Theo-
rem 4.9 (Eq. (4.37)) is satis ed, whenever is RPDF, a;; 2f0;1, 1gandn 2.

In this case, the nal condition of the theorem (Eq. (4.38)) $ similarly satis ed.

A multi-channel dither generator may be considered optimaif it yields uncor-
related dither values and requires the generation of just ennew random number
per sample per channel. The latter will be the case if the makr A is square (i.e.,
N = M). We will call such schemes and their associated matrice;(n)-optimal,
where, again,N is the number of channels of dither produced and is the order of

the dither. We have seen that N N matrix A = (g;) is (N;n)-optimal if:

1.5 201 19 8(i;j ),

2. each row of the matrix contains precisely entries of absolute value one, and



CHAPTER 5. COLOURED ERRORS AND MULTI-CHANNEL SYSTEMS 137

3. the rows of the matrix form a set of mutually orthogonal veors.

The following simple (N; n)-optimal matrices, the rst of which corresponds to a
stereo \diamond dither" generator, can serve as building btks for the construction

of many others:

3
11
(N:n)=(2:2) 8 ¢,
11
2 3
0 1 1 1
1 0 1
(N;n)=(4;3): ;
1 1 0
1 1 1 0
2 3
0o 1 1 1 11
1 0 1 1 171
10 1 1 ¢
(N;n)=(6;5):
1 10 1
1 1.1 1 0
1 1 1 1 1 0

The following rules then allow construction of other optimhschemes (the proofs

are by inspection):
Rule 1. Interchanging two rows or two columns in alN;n)-optimal matrix yields a
(N; n)-optimal matrix.

Rule 2. Multiplying a row or a column of a (N;n)-optimal matrix by 1 yields a

(N; n)-optimal matrix.
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Rule 3. If A is a (Ny;n)-optimal matrix, B is a (N,; n)-optimal matrix, and 0 is a

N; N, matrix of zeros, then thedirect sum
2 3
A Og

0" B

A BZ§

is a (N1 + Ny; n)-optimal matrix.

Rule 4. If A = (&) is a (N1, n1)-optimal matrix and B is a (N2; np)-optimal matrix

then the Kronecker or direct product [47]

2 3
a;1B a;»B - alNlB
axB  apB it ay,B

A B é 21 22 2N 1
aNllB aleB M aNlNlB

is a (N1N»; nyn,)-optimal matrix.

For example, combining two Gerzon-type (2,2)-optimal matces of the form
2 3

a=§t 1z
1 1

using Rule 3 yields the (4,2)-optimal matrix

2 3
1 1 0 O
1 10 O
A A= :
O 0 1 1
O 0 1 1

This corresponds to two Gerzon-type schemes operating imaandently in parallel.

On the other hand, combining the same two (2,2)-optimal maices using Rule 4
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we obtain the (4,4)-optimal matrix

2 3
1 1 1 1
1 1 1 1
A A=
11 1 1
1 1 1 1

This corresponds to two pairs of Gerzon-type schemes, eackmber of the second

pair receiving one of its inputs from each member of the rst @ir.

For arbitrary N and n, such optimal matrices do not generally exist. For in-
stance, it can be checked by trial and error that noN; n)-optimal scheme exists for
(N;n) 21(3;2);(3;3);(5;2);(5;3); (5;4); (5;5)0: In such cases, extra dither values
can be generated using an optimal scheme and some then didear This reduces
the computational e ciency of the scheme, but using the abos rules a matrix with

roughly the desired number of channels and order of dither cdbe found.

For most multi-channel audio applications, Gerzon-type dpmal generators op-
erating independently in parallel are appropriate, sincehiese will produce the
2RPDF dither required to render the rst and second moments fothe total er-
ror input independent. For image processing or measuremeggpplications, optimal
schemes generating higher order dithers may be of interestarder to render higher

error moments input independent.



Chapter 6

Digital Dither

Some comment is required concerning the special nature refjuantization oper-
ations, in which the binary wordlength of data is reduced par to its storage or
transmission. This operation takes place entirely withinhe digital domain, so that
both the input and dither signals are discrete valued due tohe nite wordlengths
available in practical digital systems. The continuous pd$ discussed thus far are
unattainable in a purely digital scheme so that the propergs of true digital dither

signals require further investigation.

The following discussion represents a theoretical complent to empirical re-
sults presented in [16]. It is not intended to be exhaustivdgut merely to demon-
strate that there is no great di culty in extending the results obtained for analogue

systems to digital ones, and to illustrate how this may be dan

140
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6.1 Digital Dither pdf's

Consider a quantizing system which applies digital dithera digital data before
removing its L least signi cant bits. We will use to denote the magnitude of an

LSB of the higher-precision signal to be requantized, and
=2 L
for an LSB of the requantized output.

Let us consider the following digital dither pdf

p()= pOIW(); (6.1)

wherep-( ) represents an absolutely integrable function which sersas a \weight-

ing" for the impulse train. p is assumed to be normalized such that
Z 1 )a_ .
p()d = p()=1:
-
For instance, p- might be the pdf of a dither of ordern, such as amRPDF dither,
in which case it is straightforward to show using Poisson'susimation formula
(Theorem A.7) that p has the above normalization. In general, howevep, feed

not correspond to a pdf since it need not subtend unit area.

Taking the Fourier transform of Eq. (6.1) we nd that

h
P (u)

P ’?W;i (u)

)é_ ~
P ou - (6.2)

-
where P (u) is the Fourier transform of p-( ). Note that even if P satis es the

conditions of Theorem 4.8 (for som#& ), P will not, due to the modulation of P (u)
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by the impulse train W1 (u). Fortunately, we do not require that these conditions
be satis ed in a digital system, since the requirement thaE["'™jx] be constant
for all values of the system input is not of interest. Instead, we rege only
that the moments be constant for a subset of all conceivabbe values, namely
fxjx = n;n 2 Zg, which includes all values that are representable in the digl

system. Thus we assume that the pdf of the system input can bepmessed in the

form

P(X) = B (X)W (x) (6.3)

where px is a continuous function normalized such that the integral foEq. (6.3) is

unity. Then

Py (u)

[P ? Wi](u)

2 !
Pk u - : (6.4)

=1

We will make similar assumptions regarding joint pdf's of iterest. Thus we will

consider
pi;z( 1; 2): 2p1;2( 15 Z)W( 15 2)
with
Z, Z,4 , N s o
pl;z( 1 Z)dle= pl;z(l; 2)=1:
! 1= 1 2= 1
Then

h

P 1; 2(u1; u2) |
_ 1) 2.
- pl; 2 ul _1u2 —
1= 1 =1

i
Pl; 2 ? W (ul; UZ)
R

&
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whereP . ,(uy; uy) is the two-dimensional Fourier transform ofp~. ,( 1; 2). Sim-
ilarly, we assume that we can write
xR *1 >,
Py.x,(U1; Up) = Pix, Ui —Ux  —
1= 1 =1

6.2 Digital SD Systems

Now,

so that, from Eq. (3.7), we have

I
* g k k % k+2t
Pq;x(Uq; Uy) = sinc ug — P — P, Uy :
k=1 N

Thus for g and x to be statistically independent for arbitrary Py we require that
!

K
P = =0

(6.5)

: k
for all k 2 Z except, possibly, Whenz—L 2 Z:

In this case
| | |
x 2Lk bk R 2Lk + )
Pgx(Ug; Ux) = sinc ug, — S Py uy ¥

k=1 | I =1 |

o k k X .

= sinc u4 - P — Pe ux -

k=1 | =1 |

o K
= Pyx(uy) sinc u4 - P —
k=1
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where Eq. (6.4) has been used in the last step. Note that in tHamitas ! O
(,e., asL !'1 ) Eq. (6.5) becomes Eq. (4.16), the condition of Theorem 4.&rf
analogue systems. This re ects the conception of an analagsgystem as a digital

system with in nite precision (i.e., an in nite number of bits).

Now from Eq. (6.2) we see that iff meets the conditions of Theorem 4.4, i.e.
that I
P — =0 8k 2 Zy;

then P will go to zero at the places required by Eq. (6.5). Since Eq6.2) shows
that P is periodic such that

we then obtain

Pq(ug) sinc  uq
I i

sinc? W: (ug):

Thus (using Theorem A.5)

(@)= 5 (AW (9

and in this sense the total error is uniformly distributed.

Thus we have the following theorem:

Theorem 6.1 For a digital SD system in which requantization is used to reowe
the L least signi cant bits of binary data, the total error is staistically independent
of the system input and uniformly distributed if a digital dher (with the same

precision as the input data) is applied for which
!

P E =0 8k 2 Zy:
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It is worth noting that using a dither of higher precision than the input signal is
of no bene t. For instance, a dither cf which satis es the coditions of Theorem 6.1
for L = 8 will also satisfy them for L =4, but for a quantizing system in which the
precision is reduced by only four bits there is no advantagessociated with this cf

over one which only satis es the conditions foL. = 4.

By the usual means the analysis may be extended to the jointadtstics of errors
separated in time. It is straightforward to show that for twosuch errors,q; and o,
Pavaexaixz (Ugy; U Uxy s Ux,) | |

* * * X ki . Ky
= sinc U, — sinC Ug,

k=1 ko=1 1= 1 !\2—1 |
P, ﬁ; -2 Pxixa Uy LZL\l; X2 ket 2"
so that if '
ki ky
P.. —1;—2 =0
!
for all (ki k,) 2 Z2 t ibly, when <. K2 5 22
or all (kq;ky) except, possibly, when PREN
then
Py (Ugy; Ugy) = oL (R)W (o) oL ()W ():

Henceq, and ¢, are statistically independent so that the total error will be spectrally

white.

Subject to the satisfaction of the conditions of Theorem 6,1 and x are statis-
tically independent so we may immediately write down an expssion for the cf of
the system output:

Py(u) = Pq(u)Py(u):
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If, in addition, the dither is iid, then

PYl;YZ(ul; Uz) = qu(ul) qu(UZ) le;xz(ul; UZ):

6.3 Digital NSD Systems

From Eg. (4.27) we have

G () = sin( UU)P(u)
|
. 2 "
= M P u - (66)
U k=1
Then from Eg. (3.8) we have
| |
xR ' Ly
P-(u) = G u K Px k+2
k=1 =1
so that
E[™ = - PMO)
| |
i om % R ' +2L
_ 21_ e ) K P, kK+2" . (6.7)
k=1 "=1

The only way that this quantity can be independent ofP is if we require that
!

G(m) E = O

(6.8)

for all k 2 Z except, possibly, WhenzhL 2 Z:

Note that in the limitas ! O (i.e.,asL!1 ) Eg. (6.8) becomes Eq. (4.28), the

condition of Theorem 4.7 for analogue systems.
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Returning to Eq. (6.6) and di erentiating, we have

Lo #
G o XN m A s Wk
dum L, rodu u dum ' '

If P meets the conditions of Theorem 4.8 (favl = m), then all terms in Eq. (6.9)
involving the derivatives of P go to zero at the places required by Eq. (6.8) except
for the single ¢ = 0) term involving the m-th derivative. Fortunately, this term
involves the zeroth derivative of the leading sinc functignwhich goes to zero at all

the required places. This yields the following theorem:

Theorem 6.2 For a digital NSD system in which requantization is used to meove
the L least signi cant bits of binary data,E[" ] is independent of the input distribu-
tion for ~ =1;2;:::;M, if a non-subtractive digital dither (with the same precisin

as the input data) is applied for which
p) k 0

8k2Z7Zy, and i=0;12:::;:M 1.

This theorem is a digital counterpart of Theorem 4.8. It is iteresting to note

that no such analogue exists for Theorem 4.7 in terms &f .

As before, we observe that using a dither of higher precisidhan the input
signal is of no benet. For instance, a dither cf which satises the conditions of
Eq. (6.8) with m = 1 for L = 8 will also satisfy them forL = 4, but for a quantizing
system in which the precision is reduced by only four bits the is no advantage

associated with this cf over one which only satis es the coittns for L = 4.
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We would like to write down expressions for the moments of thetal error. If
we choose a dither such that Eq. (6.8) holds, many terms vahigrom Eq. (6.7),

leaving I !
E[m= TR am KX P,
2 k=1 =1
Now, from Eq. (6.4) we know that
>a_ N
PX(O) = Px - =1:
=1
Thus
E[™= 2 cm £ (6.10)
2 k=1
which is precisely them-th moment of a notional random variable with pdf
7P (W)
although this is not, of course, the pdf of'.

Frequently, dithers in digital systems will be given a 2's-@mplement [36] repre-
sentation and thus will exhibit a mean which di ers slightly from zero. This will
be re ected in the appearance of a small non-zero mean errohish, of course, will

be input independent if an appropriate dither pdf has been dsen.

To express the moments of the system output we impose the catiwhs of
Theorem 6.2 upon Eg. (|4.41), obtaining

hd DS i
E[ym] m J_ el

W I#
k I pmo k

r=0 r'k=1

m
r

E[EX" T,
r=0

where we have observed from Eq. (6.4) tha®,(u) is periodic with period 1= so

that for any k 2 Z '

r
Px(m r) E -

m m

r
. S P ©O= EKX" )
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E[""] is given by Eq. (6.10).

6.4 Quantized Dithers

The treatment presented above is most appropriate to dithergenerated entirely
in the digital domain using, for instance, pseudo-random maber generation al-
gorithms. In particular, we have shown that whenever the wghting function p

corresponds to the pdf of an analogue dither of order (as de ned in Section 2.3),
the associated digital dither with pdf given by Eq. (6.1) shees the bene cial prop-

erties of its analogue counterpart.

In the case where a digital dither signal is generated by neugntization of
an analogue dither signal, the details of the derivation ctmge only slightly. The
forms of the Theorems, however, remain the same, with representing the cf of
the analogue signal. This can be seen directly using Eq. (%.%or the pdf of the
digital dither will be

p()=[ ?plC)W()

with cf

P (U) = sin( u)

P (u) ?W.i(u):
This expression should be compared with Eq. (6.2). Note that P satis es the
conditions of the Theorems, then so will the quantity

sin( u)
u

P (u):
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6.5 Non-Stochastic Quantizers

In some cases, stochastic quantizers may not be practicalitoplement. This is not
a problem if the signals in question are continuous-valuedn this case the addition
of dither will ensure that the quantizer input resides at a gantizer-step edge with
zero probability. On the other hand, if digital signals aren use, the probability
that the quantizer input resides at a step edge is always grea than zero. In this
instance it makes a considerable di erence to the quantizewtput (and total error)

whether the quantizer rounds up, down, or stochastically ahese edges.

We will now explore the consequences of choosing a quantizeich always
rounds up at step edges (a similar argument applies to quamérs which round
down). We note that if a (dc) virtual o set suchthatO< < isintroduced into
the dither signal, the quantizer output is una ected exceptthat quantizer inputs
residing at step edges are consistently rounded up. We canuthanalyze digital
dithered systems with deterministic requantizers using sh a notional dc o set,
which is a purely mathematical device without physical couerpart. Proceeding
otherwise as we did before, Eg. (6.2) becomes

P(u=-el2u * P u -
=1

First consider an SD system. Eq. (6.5) holds under the samesamptions as
before; i.e., that |

F — =0 8k 2 Zy:

In this case we obtain
|

3

. K .
sinc u; - €%%
k=1 h i
sinc (ug) ? Wai(ug)€? v @

Pq(Uq)
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so that

Pq(d) = o QW (g+ ):
This equation is not quite right. Itis o set by because the dither subtracted after
quantization contained the virtual o set. Removing this o set yields the correct
expression:

Pl = 5 (@ W (o)
In other words, the input and quantization error are statisically independent of

each other under the same conditions as before and the erraifps precisely what

one would expect.

Now consider an NSD system with virtually o set digital dither. Eq. (6.9)

becomes
! " # !
d"G XX m d sin( u) . dm "'P k
— j2u
(u = _— ——"¢ u -
dum ke 1 r=o Iodu u dum '

(6.11)

so that Theorem 6.2 holds precisely as before. Eq. (6.10) tislif the o set dither
pdf is used in the calculations since, in this case, no dithsubtraction takes place

to introduce spurious o sets.



Chapter 7

Conclusions

7.1 SD and NSD Quantizing Systems

We will take this nal opportunity to summarize the principal di erences between

SD and NSD systems.

First, the dither signal must be available for subtraction & playback in SD
systems, and so either the dither sequence or information signt to reconstruct
it must be stored or transmitted with the signal. That NSD sysems do not require

this added information at playback is their primary advantaye over SD systems.

On the other hand, SD systems can render the total error sighatatistically
independent of the input signal as well as rendering error isgles separated in time
statistically independent of one another. This ensures thahe power spectrum of
the total error is independent of the system input, and thatti is spectrally at

(white) even if the dither signal is not. A dither capable of ding all this is simple

152
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iid RPDF dither. The total error variance in SD systems is ahays 2=12.

NSD systems, on the other hand, cannot render the total errastatistically
independent of the input, but can only render speci ed momes of the error input
independent. Furthermore, dithers of successively higherder are required for
each moment to be so rendered. For instance, to make the meandavariance
of the total error independent of the input, a second-order ither is required|
say 2RPDF (TPDF) dither with twice the variance of simple RPDF dither. The
increased dither variance is re ected in increased total \r variance, which is

2=4 for 2RPDF dither, and it has been shown (see Theorem 4.11)ahthis is
the lowest possible total error variance achievable if therst two error moments
are to be successfully rendered input independent. Note ththe resulting error
variance is three times as great as that of an SD system, whicanders the error
statistically independent of the system input, thereby enging the constancy of
all the error moments. This di erence in the resulting total eror variance is the

principal advantage of SD systems over NSD systems.

Another di erence between the two types of systems is that ian SD system the
total error spectrum is at irrespective of the dither spectum, whereas spectrally
shaped non-subtractive dither will result in a non- at erra spectrum which, if the
system is properly dithered, will be the sum of the dither sp#rum and a white
\quantization noise" component. Some interest has been exgssed in tailoring the
shape of the dither to result in total error spectra which argerceptually quieter
than at spectra. Unfortunately the aforementioned white @mponent is una ected
by altering the dither spectrum. Thus, for such purposes, its usually preferable
to use noise-shaping error feedback, which can shape theienterror spectrum

as desired. Conditions have been given above (see Sectid) Shich will ensure
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that the resulting error spectrum is of a xed predictable fom. Spectrally shaped
dithers may still be of interest in high-speed applicationshowever, since non-white
dithers of any order can be generated using only one new pseudndom number

per input sample.

It has been shown that if the quantizer output from an SD systa, with or
without noise-shaping error feedback, is to be replayed wibut subtraction of the
dither signal, then, to avoid input-dependent spectral moalation of the error,
the dither used should satisfy the conditions necessary tm®ire absence of error

spectral modulation in an NSD system.

7.2 Audio Applications

Much of the present investigation was originally motivatedy questions which arose
in audio signal processing. Some comments regarding suclplagations seems ap-

propriate.

For audio signal processing purposes, there seems to bddigoint in rendering
any moments of the total error other than the rst and secondndependent of the
input. Variations in higher moments are believed to be inautlle and this has been
corroborated by a large number of psycho-acoustic tests aurcted by the authors
and others [13, 21]. These tests involved listening to a layariety of signals (sinu-
soids, sinusoidal chirps, slow ramps, various periodicaBwitched inputs, piano and
orchestral music, etc.) which had been requantized very asely (to 8 bits from
16) in order to render the requantization error essentialljndependent of low-level

non-linearities in the digital-to-analogue conversion sgem through which the lis-
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tening took place. In addition, the corresponding total er signals (output minus
input) were used in listening tests in order to check for anywalible dependences
on the input. Using undithered quantizers resulted in cledy audible distortion
and noise modulation in the output and error signals. A subactively dithered
guantizing system using iid 1RPDF dither was found to elimiate all audible input
dependences in the error signal, which was con rmed to be ably equivalent to
a steady white noise. A non-subtractively dithered quanting system using the
same dither eliminated all distortion, but the residual nase level was found to vary
audibly in an input-dependent fashion. When 2RPDF dither wa employed, no
instance was found in which the error was audibly distingumable from a steady
white noise entirely unrelated with the input, although thelevel of this noise was, of
course, somewhat higher than that observed in the subtragtly-dithered system.
Admittedly, these tests were informal, and there remains aeed for formal psycho-
acoustic tests of this sort involving many participants undr carefully controlled

conditions.

The use of of non-subtractive, iid 2RPDF dither is recommeredi for most audio
applications requiring multi-bit quantization or requantization operations, since
this type of dither renders the power spectrum of the total eor independent of
the input, while incurring the minimum increase in error varance. This kind of
dither is easy to produce for digital requantization purposs by simply summing
two independent 1RPDF pseudo-random processes, which mayapidly generated
using linear congruential algorithms [48, 21]. The resuitg digital dither can be

used to feed a digital-to-analogue converter for analoguéltering applications.

Important extensions of the work reported herein would incide the analysis of

systems of interest incorporating non-linearities otherhtan in nite, uniform quan-



CHAPTER 7. CONCLUSIONS 156

tizers. In particular, a complete statistical descriptionof non-linear systems with

feedback, such as sigma-delta converters, awaits develann

In closing, it is proposed that appropriate dithering priorto (re)quantization
IS as tting as appropriate anti-alias Itering prior to sampling|both serve to

eliminate classes of signal-dependent errors.
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Appendix A

Generalized Functions

This appendix provides a brief outline of the theory otempered generalized func-
tions, also known astempered distributions. Few results will be proven in detail,
but appropriate references will be given and some theoreicissues arising in the
body of the thesis will be resolved. It will be assumed that # reader is familiar

with the L, Fourier transform as de ned by Eq. (2.1).

De nition A.1 A function 2 C! (R") is said to be arapidly decreasing test

function if

supjx (J(x)j< 1

X2R"N
for all pairs of multi-indices , . The vector space of such functions is denoted by
S.

164
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This space contains, for instance, Gaussians and even funos compactly sup-
ported on any given interval such as (ax + b) wherea; b2 R and

8

2 = Dy < 1

(x) =
z 0) otherwise.

Theorem A.1 S is stable under the following operations: di erentiation,multi-

plication by polynomials, a ne transformations and the (L) Fourier transform.

Proof : The assertion is that each of the indicated operations maj&into S. This
is obvious from the de nition of a rapidly decreasing test foction in each case
except for the last, which we prove foR?! (the extension toR" is straightforward).
We wish to show that if 2 S then its L, Fourier transform "2 S; i.e., that
“t) = tN ") (1) is bounded for any given integerd\N;k > 0. Now, " is the (L,)

Fourier transform [49] of
|
I R L
(x) = > dw(x (X))

j
'n !
= i X N 7“. xK T (N Dy
2] o (k)

Each term in this sum is a rapidly decreasing test function ahthus so is (x).

Thus (x) is absolutely integrable and

z 1 z 1
jh(i= (x)e 12X dx j (jdx<1:
1 1
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De nition A.2  Alinear functional u: S! R is called atempered generalized
function or tempered distribution if there exist a real numberC 0 and a

nonnegative integemMN such that

- - X - -
jhu; ij  C supj |
ji N
forall 2 S. The generalized function is then said to be of ord@&. The vector

space of tempered generalized functions is denotedS%y

Inequalities of this sort are known assemi-norm estimates[50]. The use of the
inner product notation hu; i to denote the operation of the functionalu on the test
function is conventional. We will now show how this operation in factarresponds

to the formation of an inner product in the usual sense in mangases of interest.

The generalized functions appearing in this thesis are alf order N = 0. An

example of such is the so-called Dirac delta function, de ned by
h; i = (0):

This is a special case of the general result that any nite Bet measure determines

a generalized function of order zero by

z

h; i= d:

(The converse is also true; see [50].) Another example is tteampered distribution
associated with an ordinary locally integrable functionf , of polynomial growth,
which is determined by .

1

hu; 1= f dx:

1
Since can be chosen with support on any given interval, this deternmation is
unique up to an equivalence class of functions equal almosteywhere (i.e., di er-

ing only on a set of measure zero).
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Theorem A.2 The following operations on tempered distributions;v 2 S° pro-

duce tempered distributions:

() u+v; i=hu i+h,i;

(i) hcu; i =cu; i; ¢c2C;

(i) hu; i=( 1), i; for multi-indices ;

: . 1 D 1 .E ¢ | ol :
(iv) PAu; i= [ detA] u; (A “x) ; forareal non-singularn n matrix A;
(V) hu(x a; i=h; (x+a)i; a2R"

(vi) hgu; i =hu;gi; g2 C!(R") and of polynomial growth.

Furthermore, whenu and v correspond to ordinary functions, the results of these

operations are consistent with those for ordinary functian

The proofs are straightforward [50, 51]. As an example we p@ Part (v). uis a
tempered distribution and (x+a) 2 S, sou(x a) has a nite semi-norm estimate

and is a tempered distribution. Ifu corresponds to an ordinary functiorf then

z z
hu(x a); i= f(x) (x+adx= f(x a) (x)dx

which is the de nition of the generalized function associad with f (x  a).

Writing u(x @) is an abuse of notation, although the meaning should be clea
Some authors also denote the composition of a distributionithr a coordinate trans-

formation by u(Ax) instead of A u.
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As an application of Theorem A.2, consider the generalizedrfction associated

with the Heaviside step function
8
21 x>0

>

H(x) =
0; otherwise.

To compute its derivative we write

D E D E Z,
HO: = H O = D(x)dx= (0)= h; i; 8 28S:
0

Thus
HO = .

Arbitrary products of distributions are not de ned. Theorem A.2(vi) shows how
one can straightforwardly de ne a product when one distribtion corresponds to
an in nitely di erentiable function of polynomial growth. The problem is that S
is not stable under products with arbitrary functions, although some special cases

can be handled. Particularly useful is the following [52]:

De nition A.3  If gis a continuous function in some neighbourhood of the origin

then

g =9(0):

A product of generalized functions which is always well-deed is the so-called

tensor product of two distributions in distinct spaces:

Theorem A.3 Suppose thau 2 SYR") andv 2 S{R™). Then there is a unique

element of SYR™* M) called thetensor productof u and v, written u v, such that

hu v, i=hu ihv; i; 2S(R™); 2S(R"):
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For a proof, see [50]. We will freely abuse notation and writdown such tensor

products as
xy)= (x) (¥):
Partial derivatives are de ned in the obvious fashion. Theensor product of count-

able distributions is de nable in the same manner.

We now introduce the Fourier transform of a tempered geneiraéd function.

De nition A.4  The (forward) Fourier transform & and inverse Fourier transform

u of a tempered distribution are de ned by

where " and are the ordinary (L,) forward and inverse Fourier transforms, re-

spectively, of test functions 2 S.

Note that 0t and u are tempered distributions sinces is stable under Fourier trans-
forms.
The following identities hold.

Theorem A.4 Let u, v and the constants be the same as in Theorem A.2 and let

A denote the transpose of. Then

() a(x) = u( x);
(i) [u+ vP=n+4%;

(i) [cur= co;
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v) uT=(j2 )Y x 0;  wherex 290 x;
W kur= £ o

(vi) [ux apr= e l?2xa(x);

(vii) [€22 *u()I'=d(x  a);

(viii) [A uP'= Alq;

jdetAj

(ix) U= ur= u:

Furthermore, whereu and v correspond to ordinary functions, the results of these

operations are consistent with those for ordinary functian

Again the proofs are not di cult (see, for instance, [51]). A an example we will

prove Part (vi):

[ux ar

A E
u(x  a); Z(X)

= u(x a); (tHel?x'dt
y
= u (e l2 gy
Z . .
= u [ (DHel?2'e2xdt
D E
0; (x)e 22X

D E
0e 123 % (x) :

Note that Part (i) of the theorem can be used to rewrite each aothe subsequent
parts in terms of inverse Fourier transforms. Furthermore @ observe that the
Fourier transform of a distribution is unique since the Fouer transform operation

has an inverse; i.e., the Fourier transform is a bijective npping betweenS°and S°
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As a simple example, consider the Fourier transform of the Bic delta:

D E D E
N _ 7\

= ;" =%N0)=n; i; 8 2S:

Thus " = 1.

Now let us consider a more complicated example: the Fourierahsform of the
tempered generalized function
3
W (x) = x k) :
k=1
We should rst check that this is in fact a tempered distribuion, for which we

require the following:

De nition A.5  Consider a sequencéu,g S ®andu 2 S° We say thatu,

converges to u, written u, ! u, if

foreach 28S.

We can show that the partial sums
* +

x
(x k); (x) = (k)

k= n k= n
converge amn ! 1 and that the limit is in S% In fact, this is trivial since (x)
decreases faster than any power pfj. (How we index the summands is also clearly

irrelevant.) Now we can state the following important theoem [51, 53]:

Theorem A5 If
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then

\f\\/:iW;
] )

Proof :[Outline.] W is a periodic generalized function; i.eW (x+ )= W (x).

Using Theorem A.4(vi) we observe that
el t W (t)=o0:

(e 12 ' 1) vanishes att = k=, 8k 2 Z. We consider only the origin,k = 0,
since the situation for other values ok is similar. (e /2 ' 1) is O(t) at the origin
and it can be shown [51] thattu(t) = O if and only if u = C for someC 2 R.
Thus !

k=1
Now W s itself a sum of delta functions, so by the same brand of reasng W

is periodic with period % i.e., we can write
(el?*® 1)W (x)=0

which implies that W (t + L) = W (t). Thus
|
M !
W ()= C ¢ X = CW ( %)
k=1
for some real constantC. Then Theorems A.4(viii) and (ix) give
2
W =W "= C—ZW

whenceC2 = 1= 2. Finally we observe that (x)= e ** = "(x) 2 S is everywhere

greater than zero, sacC =15 .
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De nition A.6  When @ corresponds to an ordinary function continuous in some

neighbourhood of the origin, we may de ne thde nite integral  of u by

z 1
u(x)dx = (0):

R
Thus we obtain, for instance, the intuitively satisfying results that  (x)dx = 1
R
but that W (x)dx is unde ned.

A popular operation on generalized functions which requisesome care is that
of convolution. We introduce the notion of a compactly suppted generalized

function:

De nition A.7 A distribution u is said to havecompact support support(u)
[a; 9 if hu; i =0 for all test functions whose support lies outside; . The vector

space of compactly supported distributions is denoted BY
The following elegant and useful theorem may be found in [50]

Theorem A.6 Suppose that 2 SY(R") andv 2 EYR"). Then

hv(y); hu(x); (x + y)ii
hu(x);hv(y); (x+yjii;  2S;

u?v

is an element ofSYR"), called theconvolution of u with v, and furthermore

(u?v=

Sincev 2 EQR™") it turns out that “v corresponds to an ordinary function of polyno-

mial growth in C! (R"). Thus the product 8¢ is well-de ned by Theorem A.2(vi).
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Unfortunately this result is not quite as general as we mighike it to be. That
one of the distributions must be compactly supported is a seke restriction, and
one which is not always warranted. Of particular interest a convolutions involving
W . We will prove some useful results concerning such convabuts, but rst we

require the following notions from the Fourier theory of orthary functions.

De nition A.8  For a given functionf we say thatf 2 L,(R) if
Z 1
jf(x)jdx< 1:

De nition A.9 A function f is said to havebounded variation onR if
X )
ifx) (x5 1)j
i=1

is bounded above for all ordered nite sequences<x;<:::<X, in R.

Any function displaying only a nite number of nite discont inuities in any closed

interval will have bounded variation.

De nition A.10 A function f is said to benormalized if for eachx 2 R

) (X)),

(9 .

Theorem A.7 (Poisson's Summation Formula) Supposd 2 L,(R), is of bounded
variation and normalized. Then
* .
f(x+ k)= fi(k)e 124
k=1 k=1
In particular,

f (k) = * f\(K):

k=1 k=1
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Proof : Sincef 2 L,(R),
Z zZ,

1
Jf (x + k)jdx = if (x)jdx < 1 :
k=1 0 1

Thus the sum

f(x+ k)

k=1
converges absolutely almost everywhere and de nes an ahgely integrable func-
tion g(x) on [0; 1]. g(x) is normalized and of bounded variation so that it can be
expanded in a Fourier series [54]:
*» :
f(x+ k)= fi(k)e 124
k=1 k=1

In particular, this can be evaluated atx = 0.

Poisson's summation formula easily generalizes using Them A.4(viii) to give
|

% .
f(x+k)= i K g 12k
k=1 k=1

The formula may also be turned around to give the following:
Lemma A.1 Supposd 2 Li(R) is of bounded variation and normalized. Then

f(k)e 12k = ? f(x  k):

k=1 k=1

Proof : f (z)e 122 isin L,1(R), of bounded variation and normalized for any given
X2 R.
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Theorem A8 If f 2 L,(R) is of bounded variation and normalized then
2 W,

is a tempered distribution.

Proof : By De nition A.5 we need only show that the sequence of paidi sums
X X
f\(t) ? t k)= it k)
k= n k= n
converges am ! 1  and that the limit is a tempered distribution. The function f
satis es Lemma A.1 and thus
: *
f(k)e 12% = fi(x k)
k=1 k=1
Thus the sequence of partial sums converges for almost ewengre, thereby de ning
a locally integrable periodic functiong = f? W, which, in turn, de nes a tempered

distribution.

Note that the Lemma provides an alternative means of calcuiag the convolu-

tion.

Finally we can introduce the following novel de nition of a poduct of general-

ized functions:

De nition A.11 If f 2 L1(R) is of bounded variation and normalized we de ne
the product
fW,=[f?W]:
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This de nition has the trivial generalization
fw = i[f’”?wi]:
Note that f need not be continuous at multiples of .
As an example, consider Eq. (3.2).f (W9 = (W® w) is absolutely in-

tegrable, normalized and of bounded variation so that its @duct with W is

well-de ned in the above sense. Its Fourier transform is

*» .
f\(Uyo) = sinc (Uyo)e 12" we;
k=1
Applying Lemma A.1,
» .
[f2 W 1](Uyo) = (k w)e J2 kuyo
k=1
8
2 1‘ ej2 nuWo+ej2(n+1)uWo © W= 2n+1 ‘n2 7:
= 2 ' 2 ) y
T ez brric otherwise,
so that 8
1 2n+1
2oL )+ (w0 (n+D)] ; w= in2z
W Jw) = 2 w1 2
3 0 ) .
- w —+ 5 otherwise,

which is the expected output cpdf for a stochastic quantizer

Egs. (3.4) and (3.5) can be handled in the same fashion since
\(Uwo) = SINC (Uywo)Puv: x (Uwo + Uw} U ; Uy)
is the Fourier transform of
FW) = (W) 2pu s (W5 x )€
= W xp (Gx)erunte)

which is anL, function of w8 Thus the convolution of Eq. (3.5) and the product

of EQ. (3.4) are well-de ned by Theorem A.8.



Appendix B

Time Averages and NSD

Quantizers

It was shown in Section 4.4 that proper non-subtractive diter can render any
desired moments of the total error independent of the systemput. Furthermore,
it can render errors which are separated in time uncorrelade so that the spectrum

of the total error is white.

It has been correctly observed by Lagadec [41, 42] that monterand joint
moments are quantities which cannot be absolutely determad by empirical means.
In real time, they must be estimated from a nite series of sigal values. It is not
immediately obvious that such estimation will proceed sirtarly for, on the one
hand, the total error signal from a dithered quantization opration, and on the other
hand, an independent reference random process. It is the aohthis appendix to
elucidate the question of practical estimation of statistal moments, and to show

that for purposes of such estimation no signi cant distindbn exists between iid

178
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Figure B.1: Schematic of a non-subtractively dithered quarizing system.

noise and the total error produced in a properly dithered qudization operation.
In particular, we will allay concerns raised in [41] regardg the convergence of
variance estimates in dithered quantizing systems and demstrate that with regard
to moment estimation there is no practical distinction between the total error of a
properly dithered quantizing system and an independent iiceference process. Our
discussion will be restricted to NSD systems since in SD sggts the total error is
precisely an iid random noise. These investigations have been prevaby presented

by the author in [24].

B.1 Total Error Variance: The Estimation Ques-

tion

For reference, Fig. B.1 indicates the signals present withian NSD system. Say

that, given access to samples of the total error signdl, one wishes to calculate its
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variance. It is reasonable to hope that a rough estimate of ih quantity might be
obtained by squaring a set of the sample values (say, of them) and averaging the
results:
1
variance —  "?(i): (B.1)
N o
One would intuitively expect the accuracy of the result to bebetter for large N

than for small.

Let us proceed with this approach for a system using RPDF ditr with a static

(dc) system input signal of the form:
x(i)=a ;

where denotes one LSB of the system (after quantization) ad wherea is a
constant such that 1=2 a< +1=2. We will estimate the total error variance
and see how the value we obtain changes witth. Fig. B.2 shows results for twenty
trials using di erent, randomly chosen values ofa. The curves were produced by
evaluating Eq. (B.1) at values ofN equal to successive powers of two. For small
values ofN, the estimates exhibit a broad range of values which someta® uctuate
wildly as N increases. FolN > 8 the uctuations die down and all of the estimates
lie roughly in the range from 0 to 2=4, but they show no sign of converging to a
single value. (We will see that the reason for this is that théotal error variance for
an RPDF dithered quantizing system depends upon the value tie static system

input value a.)

Now we will try the same experiment with 2RPDF (i.e., TPDF) dither (which
is the sort of dither recommended for use in many applicatienncluding audio [23,

11, 16, 18]). Fig B.3 shows the results for twenty trials. Tlsi time, after initial

uctuations, the variance estimates appear to converge to walue of roughly 2=4.
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Figure B.2: Total error variance estimates as a function of he number of

samples averaged in an RPDF dithered quantizing system. Twety trials are

shown for a system with randomly chosen static input signalof level between
0:5 and +0:5 LSB.
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Figure B.3: Total error variance estimates as a function of he number of
samples averaged in an 2RPDF dithered quantizing system. Tenty trials
are shown for a system with randomly chosen static input sigals of level
between 0:5and +0:5 LSB.
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Figure B.4: Periodic bipolar ramp signal ( =0:2).

The observed results can vary with the choice of system inpugignal. For

instance, let us try the above experiments with a system inpwf the form:

. i i 1
= —+ —+ o+ = -
x(1) L L 2

(B.2)
where the \ oor" operator b creturns the greatest integer less than or equal to its
argument. The above function is a repeated bipolar ramp of ped L samples,
amplitude 1 LSB, and starting at a value , as illustrated in Fig. B.4 (a similar
test function was used in [41]). Fig. B.5 shows results for emty trials using an
input ramp signal of periodL = 400 samples starting at randomly chosen values of
lying between 1=2 and +1=2. In obtaining this gure RPDF dither was used,
while Fig. B.6 shows results of the same experiment using 2BP dither. With
this choice of input signal, both sets of estimates appear twnverge to particular
values (of roughly 2=6 and 2=4 respectively), but the 2RPDF curves do so more

rapidly with increasing N .
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Figure B.5: Total error variance estimates as a function of he number of
samples averaged in an RPDF dithered quantizing system. Twety trials are
shown for a system with a repeated ramp input signal with perod L = 400
samples and randomly chosen starting values between 0:5and +0:5 LSB.
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Figure B.6: Total error variance estimates as a function of he number of
samples averaged in an 2RPDF dithered quantizing system. Tenty trials
are shown for a system with a repeated ramp input signal with griod L = 400
samples and randomly chosen starting values .
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Figure B.7: Total error variance estimates as a function of he number of
samples averaged for an iid 3RPDF random noise process. Twgntrials are
shown.

It is of interest to compare these curves to similar ones forrandom noise pro-
cess which is not associated with quantization, and whosensples are statistically
independent of one another. Fig. B.7 shows the results of tatg trials at estimating
the variance of such a process with a piecewise-parabolicf g8BRPDF or PPDF).?!
The curves appear to converge to a value of roughly?=4 and the convergence is

qualitatively similar to that shown in Fig. B.6.

What should we conclude from these results? Obviously, estites of the to-
tal error variance in dithered systems converge di erenthgiven di erent dither or
input signals. In particular, Figs. B.2 and B.5 di er markedy in appearance, al-

though in each case RPDF dither was used. Figs. B.3 and B.6 arere comparable

1The reason for this choice of pdf will be clari ed in Section B4.3, although the qualitative
appearance of Fig. B.7 would be similar for any independenttationary random process regardless

of its distribution.
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in their broad features, but how comparable are they to the cues for the inde-
pendent noise process of Fig. B.7? What are the audible cogsences, if any, of
the di erences? Appropriate dither is supposed to elimina audible relationships
between the system input and the total error. In view of the raults obtained above,

can we say that the dither is doing its job properly?

The remainder of this appendix attempts to demonstrate thatsubject to the
choice of an appropriate dither signal, estimates of statisal quantities such as the
total error variance converge in a fashion which is not sigoantly di erent from
the convergence of such estimates for an independent sta@oy random noise,
hence answering the estimation questions raised by Lagaded41]. On the other
hand, for instance, the use of RPDF dither does not render thtetal error variance
independent of the system input, so that estimates of this @untity are input de-
pendent. This is observed in Fig. B.2 and in [41], which invegated only RPDF
dithered systems [42]. 2RPDF dither, on the other hand, elimates all suchnoise
modulation (i.e., uctuations in the error variance), yielding a consant variance of

2=4, Under such conditions, estimates of the total error variece always converge

to this value in a well-behaved fashion, as observed, for ewple, in Fig. B.3.

B.2 Time Averages
In addition to ensemble averagae®presented by expectation values, we can de ne,
for any stochastic processime averagesof the form

Wil 1rle 3: B.3
i = lim Ni=0 (xi); (B.3)
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where we have assumed a discrete time varialile 0. (Recall that x; = x( ;t;),
a random variable; see Section 2.1.) Althoughf i is not time dependent, it is still

dependent on and is hence, in general, a random variable.

For many important stochastic processes, howevd, i turns out (in the limit)

to be independent of so that it is just a number. In particular, processes for whit
E[f](t) = Hi

is a numerical constant, independent of and t, for any function f of the random
variable, are said to beergodic The precise conditions for ergodicity are discussed

in, for instance, [32]. The essence of one su cient conditiois that

each sample functiorx( ;;t) displays, somewhere in the interval 0 t< 1,
all the same statistical behaviour as every other sample fation (a condition

which is assumed to be satis ed in practice), and

the stochastic process is stationary in the strict sense

If the relation E[f ](t) = Hf i holds only for some particularf , then the stochastic
process is said to bergodic inf . The conditions for this to be true depend on the
choice off and will generally be weaker than the conditions for generargodicity.
Such conditions ensure not only that the mean of nite I -term) time averages,
considered as random variables, tends to the required expeon value asN ! 1

but also that their variance tends to zero.

We will sometimes nd it useful to denote thek-th moment of a stochastic
process which is ergodic ixk as my. Hence, for processes who&eth moment is

constant with respect to time, we will write that

m, = E[x¥] = mxXi:
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B.3 Estimators

In monitoring the statistical properties of a stochastic pocess, no real-time system
(e.g., the human ear) can rely on either ensemble or in niteime averages. The
pdf of the process at a given time is not usually knowa priori, so expectation
values cannot be computed, and an in nitude of samples is neaivailable for time
averaging (neither would one want to wait forever to get theasult). In practice,
statistical quantities such as moments must be approximatieusing some practical
time-limited algorithm. For instance, we might reasonablyhope to arrive at an
approximate value, My, of the k-th moment of the stochastic process by using

Eq. (B.3) truncated at the N -th term to give the following formula:

4 1%1
M= xK: (B.4)
i=0
We say that the rule assigning a value tang is an estimator for my, and that my

is an estimate thereof.

Eq. (B.4) represents Eq. (B.1) generalized to estimate an latrary ( k-th) mo-
ment and recast in the parlance of random variables. That ishe terms in Eq. (B.1)
were simple numbers, whereas those in Eq. (B.4) are randonriedles whose sta-
tistical properties are described by associated pdf's. Ihtis captures the properties

of not just a single trial estimation, but of such estimatios in general.

Observe that Eq. (B.4)assumeghat the moment to be estimated,E [x¥](t), is at
least roughly constant forO i N 1, otherwise the estimate will not represent
a meaningful quantity. Also note that, due to the nite humber of terms in the
summation, the estimatemy, is itself a random variable even if the stochastic process
in question is ergodic inmy (i.e., in practice the estimate depends on the sample

function obtained). The statistical behaviour of this ranadm variable is obviously
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of considerable practical interest, and depends on the cheiof estimator.

One desirable property in an estimator is that it yield, on agrage, the correct

result. In particular, it would be nice if
E[r’hk] = Mg:

Such an estimator is said to bainbiased We can easily see whether or not the
estimator Eqg. (B.4) has this property by using the linearity of the expectation

value operator:

" #
1 %1
Elf] = E = xK
N i=0
1 X1 h i
= —  E xf: (B.5)
N i=0 I
If E[x¥] is not a constant for 0 i N 1 then Eg. (B.5) cannot be further

simpli ed. On the other hand, if the process is ergodic imy (or if, at least, the

my is constant over the time interval of the estimation), then

E xK

= Mg (B.6)

E [rh]

so that M is unbiased.

An estimator may be unbiased, but yield wildly uctuating results with succes-
sive trials. A common measure of the consistency of an estitoais its mean-square
error (MSE):

h i
MSE[f]Z E (e my)?

Note that this is only a meaningful quantity if the process isrgodic inmy.
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What is the MSE of iy as de ned by Eq. (B.4)? Assuming thatm, = E[xX] is

aconstantforO i N 1, then
2 % 1 I
1
E4 — X!( Mg
N o
1
E [X/X
iij =0 i=0
Ij( 1
EXx] mi: (B.7)

MSE[rh]

|-

2

- 2

2 ..
i;j =0

Z

Now x and x¥ (i 6 j) are said to beuncorrelated if
EXix‘1= EX{IEX]:

If this is the case fori and j between O andN 1 wherei 6 j, then Eq. (B.7)

reduces to
" #
1 1%1?
MSE[f\] = NN Elx*] mZ : (B.8)
i=0
Finally, if
Ex™] = my
is a numerical constant independent of time forO i N 1, then
1h 2i
MSE[rh] = N My Mg : (B.9)

Egs. (B.7), (B.8), and (B.9) are of crucial importance for tle treatment of
moment estimation in dithered systems which is to follow. A ateworthy feature of
each is the nature of its dependence upads, which a ects the relationship between
the accuracy of an estimate and the number of data points useéd produce it.
We will refer to the function MSE[M¢](N) as the convergence curvedor M. In

particular, Eq. (B.9) implies that, for any process which isstrict-sense stationary,
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the convergence curve decreases aNlwith increasingN . It is to this convergence
behaviour that we must compare the convergence of moment iesates in dithered

quantizing systems.

Let us then proceed to apply an estimator in the form of Eq. (Bl) to the total
error process of a dithered quantizing system. We will seek tletermine whether
or not the resultant estimate converges and, if so, to what ahow rapidly, for
systems using di erent types of dither. Any conclusions wilbe compared to an

independent stationary stochastic process.

B.4 Moment Estimation In Dithered Systems

Each signal present in a quantizing system can be consideigsla stochastic process,
but we will limit our discussion primarily to the statistical properties of and".
(We will henceforth drop from"; the subscripti, associating it with time t;, unless

it is speci cally required.)
It has been shown (see Eq. (4.48)) that the conditional pdf dfis
Prix (" x) = ?p 1MW (" + x); (B.10)

wherep is the pdf of the dither. Note that this function is periodic wth period
. Eg. (B.10) shows that the conditional pdf of " is functionally dependent onx
regardless of the choice gb , so that asx varies with time so do the statistical
properties of". This is a re ection of the fact that, in an NSD system," can never

be made a stationary random process independent of the systenput.
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We will nd opportunity to use the following input-averaged total error pdf
zZ .
n 1 _2 mn,
P = = pu(ix)dx

[ ?p1"):

In the most general case, all of the moments 6fwill be time varying, so that
estimates of them will be at best approximate and at worst medngless. Theo-
rem 4.7 indicates however, that using iihRPDF non-subtractive dither renders
the rst n moments of the total error independent of the system input, rad results,
forn 2, in a total error power of (1 + 1) 2=12. The moments of the total error
are then given, for 1  k n, by Eq. (4.31). Of particular usefulness are the

expressions fok =1 and k = 2:

E['] E[] (B.11)

2

E[ ?]+ o (B.12)

Furthermore, Eq. (4.35) shows that such dither will render

E["?

E[""]1= E[VIED]

(i.e., it will render "k and ".

; uncorrelated) for positive integersk;” nandi 6 j.

These properties will prove su cient to make several imporant statements con-
cerning the estimation of statistical quantities in systera using practical dither
signals. We will thus proceed to consider systems using tereommon types of
dither: null dither (i.e., undithered systems withp ( ) = ( )), RPDF dither,
and 2RPDF (i.e., TPDF) dither. We see from Theorem 4.7 that nli dither will
not render any moments of the total error independent of theystem input (since
P (u) = 1). RPDF dither, however, will render (only) the rst moment indepen-
dent, and 2RPDF dither will render (only) the rst and secondmoments indepen-

dent.
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B.4.1 Undithered Systems

We wish to compare moment estimation in undithered systemstmoment esti-
mation for some stationary random process. The question natlly arises as to
what pdf is appropriate for this reference processWe argue that the appropriate

reference process isniformly distributed; that is, it has a pdf pjgs of the form
0

Pref, Wi (W):

Indeed, the Classical Model of Quantization assumes that ¢htotal error in an
undithered system has precisely this pdf. Furthermore, ifiee conditional pdf of the
total error in such a system is averaged over all possible miplevels, a rectangular

function is the result.

The moments of the above reference process are:

E[] = 0
) 2
E['Y = —
2
82 )
£y = i1 2 k even,
2 0; k odd.

These moments are all time invariant so that for such a refemee process we can

use Eqg. (B.9) to write that

1h 2i
MSE[rhk] = W Mok My

How do these results compare with those for an undithered quié&zing system?
In such a system, the total error is a deterministic functiorof the input. Hence, for
an arbitrary time varying input all moments of the error are ime dependent and

the MSE of estimates thereof will be ill de ned.
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On the other hand, for static system inputs, the error is a catant numerical
value, ", so that
E[u:(] — uk:

Thus, all estimates of the error will convergemmediately (i.e., MSE[M](N) = 0)
for any static input. This is little consolation for the fact that the mean error is
generally non-zero. The reader should by now be well awareatithat undithered
quantizing systems produce distortion of signals passingrough them. Obviously,
the total error in an undithered system behaves very littleike an independent
stationary random process with respect to moment estimati but this is not sur-

prising.

B.4.2 Rectangular-pdf Dithered Systems

We argue that the appropriate reference process to which arPRF dithered system
should be compared has a triangular pdf of 2 LSB peak-to-peanplitude (i.e.,
2RPDF). Such a process corresponds to one which would be punodd by summing
the notional statistically independent uniformly distributed processes associated
with the dither and the idealized quantization error of the ®1Q. The relevant pdf

is

Pref, (W) = [ 7 Jw)

8 1 wE
3

0; otherwise,
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with associated moments

EF] = 0 (B.13)
2
E[nZ] - (814)
E['4] i K+D)k+a) <M (B.15)
- 0; k odd.

We must treat the mean error in an RPDF dithered system di eratly from the

higher moments, since it is a constant,
m; =0;
according to Theorem 4.7 and Eq. (B.11). Also, in such a systewe have
El""]1= E[MIE]

fori 6 j, so that, according to Eq. (B.8), we can write
' #

E["?] : (B.16)

i=0

1 1%1?
MSE[] = — —
SEffu]= 3
Unfortunately, E["?] is not constant for time-varying inputs. While this means hat
the MSE[;] does not in general decrease asN, we can at least compute bounds

for it by using Eq. (B.10) to nd the variance of " as a function ofx:

z 1
E["*x] = "Zpix (" x)d"
8
2 x( x+); 0 x< ;
= 5 (B.17)
E[x 15 7 x<(+1)
That is, for 0 x < , E['3x] is a section of a parabola, which is periodically

repeated outside this interval as shown in Fig. B.8. The maxium and mini-
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Figure B.8: E['?jx] as a function of x for an RPDF dithered quantizing
system.

mum values of this function are ?=4 and 0, respectively. We may conclude from

Eq. (B.16) that MSE[rh,] always lies between the curves
2
fmin.(N)=0 d f N)= —:
min, (N) an max, (N) N
The convergence curve MSEj{](N ) for the reference process is given by Egs. (B.13),
(B.14) and (B.9) as

fref, = &

It is straightforward to calculate from Eq. (B.17) that the average value of
E["?jx] in an RPDF dithered system is 2=6. Substituting this value into Eq. (B.16)

for E["?] yields the averageconvergence curve, which is identical torer (N).

Fig. B.9 shows a family of curves generated in a computer expeent which
tried to estimate the mean total error of an RPDF dithered quatizing system

with a static system input of 0.5 LSB. Each curve correspond® a separate trial
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Figure B.9: Estimate of E["] for an RPDF dithered quantizing system with
a 0.5 LSB system input, shown as a function of the number of saples used

in the estimate.
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Figure B.10: MSEm4](N) for an RPDF dithered quantizing system with
static system inputs, compared with the theoretical upper bound and refer-
ence convergence curved,,ay, and f ¢ . Data averaged over 1000 trials.
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using the estimator discussed above, and represents theimstte rfi; as a function
of the number N of samples use to compute it. At any giverN, each curve can
assume a di erent value, since the estimate is a random vahke, but this would be
true even if we were trying to estimate the mean of the referea process. A more
meaningful curve to examine is thanean squareof a large number of such curves,
which tends to the convergence curve MSE[NN ) (provided that the latter is well-
de ned). This curve is plotted in Fig. B.10 for a variety of shtic system inputs.
One thousand trials were averaged to yield the data. Note thaince the data for
a static 0 LSB system input resides at zero it does not appear the gure. Also
shown for comparison aréd max, and frefl- Note that for all of the given system

inputs, the empirical convergence curves lie on or below thieeoretical maximum.

For non-static system input signals, MSE{}](N) will not decrease like N, but
will always be bounded byf 4y and fyjn,. This is demonstrated in Fig. B.11
for a repeated ramp input (see Eq. (B.2)) withL =100 and = 0:0. We conclude
that while we cannot predict the precise functional form of E[m,] for this kind
of system, it is bounded from above by a curve which approacheero at a rate of
1=N.

Unfortunately, we cannot make similar statements about MSE] for k > 1.
For an RPDF dithered system,my is not independent of the system input fok > 1,
so that given a time-varying input signal these moments wildlso vary with time.
Hence, any estimates of such moments will be meaninglessr katuating inputs
which, in the long run, distribute themselves uniformly ove an integral number
of quantizing steps, estimates oy will tend to converge to the mean value of
E['¥jx]. This is precisely what was observed in Fig. B.5 (similar haviour was

observed in [41]), where the variance estimates slowly cenged to a value of 2=6.
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Figure B.11: MSEm](N) for an RPDF dithered quantizing system with a
repeated ramp system input signal L = 200 and = 0:0). Data averaged
over 1000 trials.

Hence this behaviour is a consequence of noise modulationgdas to be expected.
For static system inputs, the variance is constant but depeatent on the input level,
so that estimates thereof will converge but to a di erent vale for di erent inputs.

This is observed in Fig. B.2 where, as we noted, the estimatde not converge to

any unique value.

B.4.3 Triangular-pdf Dithered Systems

The appropriate reference process against which to compaite total error of a
2RPDF dithered quantizing system corresponds to the sum ohtee statistically

independent, uniformly distributed random processes, sdat it has a piecewise-
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parabolic pdf (3RPDF or PPDF) of the form

prefZ(W;t) = [ ? g ?1(w)
2
% 52 0 jwi< 5
- 1 3 2 3
2 3 % WS 5 Wi
0) otherwise,
with associated moments
E['] = 0O
) 2
E[?] =
91 4
n4 —
BT = ¢560
5 § ¥ 1 — k' k even
E['N 4k+1)(k+2)(k+3) 2 ° ’
3
. o) k odd.

In a 2RPDF dithered system, the rst two moments of the total eror are input

independent and given by Egs. (B.11) and (B.12) as

m; = 0

m, = T;

which are equal to the rst two moments of the reference pross. Hence, Eq. (B.9)
allows us to write that

2

MSE[Ma] = 25

which is precisely equal to the convergence function of thast moment of the

reference process and independent of the system input signa
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Figure B.12: E["4jx] as a function of x for a 2RPDF dithered quantizing
system.

MSE][rh,] depends on the fourth moment of the total error, which is ingt de-
pendent in this kind of quantizing system, so that the best wean do is set bounds

upon it as we did for MSEf,] in Section B.4.2. Using Eqg. (B.10), as before, we

nd that
Z,
E["Yx] = *pix (" x)d
81 2 2
3 34 3—x2+—' 0 x<
_ 2 4 !
2 OEMix ] x<(+1)

This function is shown in Fig. B.12. Its maximum and minimum walues are “=4
and “4=16, respectively. We conclude using Eq. (B.8) that MSE{/] always lies

between the curves

34
fmin,(N) =0 and gy (N)= o
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The average value oE["4jx] is 13 4=80, which yields an average convergence curve

identical to f refZ:
4

fref, = 10N

Fig. B.13 shows a family of curves generated in a computer epment which
tried to estimate the second moment of the total error in a 2RBF dithered quan-
tizing system with a static null system input. Fig. B.14 show 1000-fold averages of
the mean-square error in such curves for various static sgst input values. (The
data for a static 0.5 LSB system input resides at zero and hemncloes not appear

in the gure.) Shown for comparison aref max, andf of .

Again, although we cannot predict the precise form of MSE{4} for this system,
we conclude that its upper bound is a curve which approachesrp as EN. Itis
now clear why the estimates of Figs. B.3, B.6 and B.13 all coenge quickly, and in
a similar fashion, to a value of 2=4, in spite of the di erent system input signal

associated with each gure.

Such claims cannot be made about MSH/} for k > 2, in which case, as for
MSE][rh,] in an RPDF dithered system, the quantity being estimated isot constant
for non-static system input signals. For uctuating inputs which, in the long run,
distribute themselves uniformly over an integral number ofuantizing steps, such

estimates ofm, will tend to converge to the mean value oE ["¥jx].

B.5 Conclusions

Let us try to relate our ndings to the questions posed in Seain B.1 and the

experimental results shown there.
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Figure B.13: Estimates of E['?] for a 2RPDF dithered quantizing system
with a 0 LSB system input, shown as a function of the number of amples

used in the estimate.
1.0000

8 16 32 64 128 256 512
Number of Samples, N

0.1000 F.

0.0100 ¢

MSE in Estimate [LSB"4]

0.0010

0.0001

UPPER BOUND
REFERENCE ——

Figure B.14: MSE[m,](N) for a 2RPDF dithered quantizing system with
static system inputs, compared with the theoretical upper bound and refer-
ence convergence curved,,ay, and f ¢ . Data averaged over 1000 trials.
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We have found that there exist de nite prerequisites for sumessful moment
estimation in dithered quantizing systems. In particular,if a meaningful estimate
of my is desired then it is necessary that this quantity be rendedeindependent of
the system input and thus constant with respect to time by usig an appropriate
dither signal. It is now obvious how to interpret Fig. B.2: the variance estimates
should not be expected to converge to a unique value since in RPDF dithered
system the total error variance depends upon the value of treatic system input
applied. By the same token, the variance of the total error isuch a system given a
ramped input signal is not constant, so the curves of Fig. B.6ltimately converge
to a value representing the average variance of the total em during the time
interval of estimation, namely 2=6. In both cases, the behaviour of the estimate

is profoundly a ected by the presence of noise modulation.

On the other hand, the curves in Figs. B.3 and B.6 all converg® a unique

value because, with 2RPDF dither, the variance of the totalreor is constant at

2=4 for all inputs. How does the convergence compare with thabifa stationary
random process whose samples are statistically independeh one another? It
has been shown that the MSE of variance estimates for such aigedecreases like
1=N, while the corresponding MSE in a 2RPDF dithered system is lhaded from
above by a curve which decreases likeeMl. Hence, although we cannot in general
predict the functional form of MSEM;] for such systems, we can say that it goes
to zero at least as fastas the MSE of some independent random noise process.
Furthermore, we have found that estimates of the total errowvariance converge on
average as rapidly as variance estimates for a piecewiseghelically distributed
noise of variance =4, and also that estimates of the mean total error converge
precisely as rapidly as estimates of the mean of such a noise. We dedubattthe

input dependence of the estimation process noted in the 1RFOdithered system
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(above and in [41]) would not have been observed had 2RPDF ldér been used.

Signal moments higher than the second have not been observedave percep-
tual signi cance in most applications. Indeed, variationsn these moments have
proven inaudible in a wide variety of listening tests [21]. Bhce, the recommended
dither for audio applications is 2RPDF [23, 11, 16, 18], siechis dither is unique in
minimizing the second moment of the total error subject to th restriction that it
render both the rst and second moments constant with respédto time regardless
of the system input (see Theorem 4.11). We have seen that faragtical moment
estimation purposes the total error in a system using prop@RPDF dither displays
convergence properties which are as good as, or better tham, independent noise

signal.

All of these desirable results are contingent upon the cheioof proper dither.
If IRPDF dither (or 2RPDF dither of incorrect amplitude) is used, the desired
moments will not be constant and estimates thereof will geraly be meaningless.
We conclude that dither does its job properly, but only if itsattributes are properly

chosen.



Appendix C

Derivatives of the sinc ) Function

In this appendix we prove two technical lemmas required in 8gon 4.4.3.

Lemma C.1 If
sin(x)

JOERS

thenforn2 Z;n 0,

X0 nl sin x+(n+i)s;
f(n)(x) = (n I)' Xi+l 2 .,
i=0 :

Proof : We will use induction. We observe that the formula holds fon = 0 and
suppose that it holds forn = m with the object of proving that it then holds for

n=m+1. We also observe that

dgsin():sin + >

205
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Then, di erentiating the expression forf (M (x), we have

f(m+l)(x)
X0 m!  Sin x+(m+i+1)5 X m! (i+1)sin x+(m+i)5
o (m oy Xi+1 o (m D) Xi+2
sin x+(m+1)5 X1 ( m! _ )
= 1 —sin x+(m+i+1)=
X - X (m i) 2
m! o - ) | 1 sin x+2ms
———isin x+(m+ i = m!(m +
(m i+21)! ( )2 ( ) Xm+2
sin x+(m+1)5 X' mim i+1)+ mn#sin X+(m+i+1)5
= + -
X - (m i+1)! xi+l
sin x+2ms

K1 (m+1)! sin X+(m+1+ )5
o (M+1 i) Xi+l '

This proves the lemma.

Of course, this implies that for

sin( x)

sinc (X) 4 x

we have

) X n' sin X+(n+i)s
sind™ (x) = n . : :
( ) ( ) - (n |)| ( X)|+l

Lemma C.2 Supposem;n2 Z, m landn m. Then

" #
d"  sinx) "
dxn X

is non-zero forx = k , k2 Z.
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Proof : Let
sin(x)
X

f(x)= X

From Lemma C.1 we have

. X n sin k +(n+i)s _
f( )(k ): . (n |)| (k )i+1 2

Suppose, for purposes of contradiction, that 2 Z, and that the above expression

vanishes. This implies that

X0 n!  sin (n+1i)3
i (N D (k)

: . o N 1
The left-hand side of this expression is a polynomial nIO(ﬁ so that z5 = o must

be a non-zero root of the equation
X n! . . i
~ Wsm (n+ |)§ z'=0:
Then, sincez, is an algebraic numberk must be a transcendental number, contra-
dicting the assumption thatk is an integer. Thus no derivatives of (x) vanish for
x=k ,k2 Z.

The extension to powers of (x) is straightforward. The non-vanishing terms

n

dx"
o o1 . .
resulting in a polynomial in o which cannot vanish fork 2 Z,.

in [f (x)]™ will consist entirely of nite products of derivatives of f (x), again

2

This, of course, implies that then-th derivative of [sinc (x)]™ is non-vanishing for

x=£,k220,n m.



