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Abstract

A detailed mathematical model is presented for the analysisof multibit quantizing

systems. Dithering is examined as a means for eliminating signal-dependent quanti-

zation errors, and subtractive and non-subtractive dithered systems are thoroughly

explored within the established theoretical framework. Ofprimary interest are the

statistical interdependences of signals in dithered systems and the spectral proper-

ties of the total error produced by such systems.

Regarding dithered systems, many topics of practical interest are explored.

These include the use of spectrally shaped dithers, dither in noise-shaping systems,

the e�cient generation of multi-channel dithers, and the uses of discrete-valued

dither signals.
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Chapter 1

Introduction: Quantization

Dither and quantization are among the most frequently discussed topics in audio

and other �elds of signal processing. Dithering techniquesare now commonplace

in applications where it is necessary to reduce the precision of data prior to stor-

age or transmission. In spite of widespread interest in dither and quantization, a

comprehensive theory of their operation did not exist in print prior to the author's

published investigations in this area, although certain unsubstantiated results could

be found scattered among sundry journals. This thesis attempts to collect all of the

signi�cant known theory, to substantially extend it, and to provide rigorous justi�-

cation for the various \rules of thumb" which have been adopted by the engineering

community.

The author's interest in dithered quantization arose with an eye to its use in

audio signal processing. Undithered quantization can produce audibly deleterious

distortion and noise modulation in audio signals, indicating that the mean and

variance of the quantization error signal are signal dependent. It will be seen

1



CHAPTER 1. INTRODUCTION: QUANTIZATION 2

that the use of dither can eliminate such input dependences,yielding an audibly

preferable error signal which is perceptually equivalent to a signal-independent

random noise. Similar results are useful for grey-scale or colour quantization of

images, in which at least the �rst two (and possibly the third) quantization error

moments are perceptually meaningful and should be renderedsignal independent.

Data conversion and measurement instruments such as spectrum analyzers can also

make pro�table use of dithering when the statistical attributes of input signals need

to be precisely deduced from quantized measurements.

1.1 Quantizers and Quantizing Systems

Analogue-to-digital conversion is customarily decomposed into two separate pro-

cesses:time sampling of the input analogue waveform andamplitude quantization

of the signal values in order that the samples may be represented by binary words

of a prescribed length. The order of these two processes is immaterial in theory,

although in practice quantization is usually second. The sampling operation incurs

no loss of information as long as the input is bandlimited in accordance with the

Sampling Theorem [1], but the approximating nature of the quantization operation

alwaysresults in signal degradation. An operation with a similar problem isrequan-

tization, in which the wordlength of digital data is reduced after processing in order

to meet speci�cations for its storage or transmission. An optimal (re)quantizer is

one which minimizes the deleterious e�ects of the aforementioned signal degrada-

tion by converting the signal-dependent artifacts into benign signal-independent

ones as far as possible.

Quantization and requantization possess similar \staircase" transfer character-
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w w

(a) (b)

D

Q(w) Q(w)
D

Figure 1.1: Quantizer transfer characteristics: (a) mid-tread, (b) mid-riser.
The size of one LSB is denoted by� .

istics, which are generally of either themid-tread or mid-riser variety illustrated in

Fig. 1.1. We will only consider quantizers which are bothuniform, meaning that

all steps in the staircase are of an equal time-invariant size, andin�nite, which, for

practical purposes, means that the input signal is bounded such that it is never

clipped by saturation of the quantizer. The step size, �, is commonlyreferred to as

a least signi�cant bit (LSB), since a change in input signal level of one step width

corresponds to a change in the LSB of binary-coded output.

Quantization or requantization introduces into the digital data stream an error

signal, q, which is simply the di�erence between the output of the quantizer, Q(w),

and its input, w:

q(w)
4
= Q(w) � w; (1.1)

where we use the symbol
4
= to indicate equality by de�nition. This quantization

error is shown as a function ofw for a mid-tread quantizer in Fig. 1.2. It has a

maximum magnitude of 0.5 LSB and is periodic inw with a period of 1 LSB.

We will refer to systems which restrict the accuracy of sample values using
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w

0.5

-0.5

1.0-1.0
[LSB]

q(w)
[LSB]

Figure 1.2: Quantization error, q(w), as a function of quantizer input, w, for
a mid-tread quantizer.

multi-bit quantization as quantizing systems, of which there exist three archetypes:

undithered (UD), subtractively dithered (SD),and non-subtractively dithered (NSD).

Schematics of these systems are shown in Fig. 1.3.

Throughout the sequel, we will refer to thesystem inputasx, the system output

as y, and the total error of the system as" where

"
4
= y � x;

as distinguished from the quantization error,q, de�ned by Eq. (1.1). In an un-

dithered quantizing system, the system input,x, is identical to the quantizer input,

w, so that the total error equals the quantization error; i.e., " = q. In the other

two schemes, the quantizer input is comprised of the system input plus an additive

random signal,� , calleddither, which is assumed to be stationary1 and statistically

independent ofx. In such systems the quantizer input,w = x + � , is not a deter-

ministic function of x and neither is the total error," . In the subtractively dithered

1A stationary random process is one whose statistical properties are time-invariant. Such

notions from probability and statistics, which are crucial to the analysis of dithered systems, will

be systematically introduced in Chapter 2.
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input

dither

x +

+

(b) subtractively
dithered

, n

w = x + n

quantizer output

y = Q(w) - n
   = x + q(x+n)
   = x + e

QS S
+

channel

input

dither

x +

+

non-subtractively
dithered

, n

w = x + n

quantizer output
QS

input

x

(a) undithered

w = x
quantizer output

y = Q(x)
   = x + q(x)
   = x + e

Q

channel

input

dither

x +

+

non-subtractively
dithered

, n

w = x + n

quantizer output
QS

(c)

y = Q(w)
   = x + n + q(x+n)
   = x + e

Figure 1.3: Archetypal quantizing systems: (a) undithered (UD), (b) sub-
tractively dithered (SD), (c) non-subtractively dithered (NSD). Shown are
the system input, x, the dither signal, � , the quantizer input, w, and the
system output, y.
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topology, the dither signal is subtracted from the quantizer output, presumably

after this output has been transmitted through some channel. This subtraction

operation is omitted in a non-subtractively dithered system.

The objective of dithering is to control the statistical properties of the total

error and its relationship to the system input. In undithered systems, we know

that the error is a deterministic function of the input. If the input is simple and/or

comparable in magnitude to the quantization step size, the total error signal is

strongly input-dependent and audible as gross distortion.We shall see that use of

dither with proper statistical properties can render the total error signal audibly

equivalent to a steady noise 
oor.

1.2 A Brief History of Quantization Theory

Although citations will occur at appropriate points throughout the text, the for-

mulation will be of a very general sort so that results will not appear in the order

in which they were discovered. Hence a concise history of theoretical develop-

ments concerning quantization and dither is presented below to provide a contextual

framework for the ensuing discussion.

It must be acknowledged that all mathematical treatments ofquantization owe a

substantial debt to the work of Widrow [2, 3, 4], who developed many of the essential

mathematical tools while studying undithered quantizing systems. It was Widrow

who �rst demonstrated the usefulness of characteristic functions in analyzing such

systems.

Interest in SD systems arose long before that in non-subtractive schemes. The
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original proponent of subtractive dither was Roberts [5], who experimented with it

in video applications. It was later adapted for use in speechcoding, where the �rst

psychoacoustic evaluations of dithered systems were undertaken [6].

The unidimensional statistics of SD systems were �rst explored by Schuch-

man [7], who published conditions on the dither which would ensure uniform dis-

tribution of the error signal and its statistical independence of the system input. A

more detailed analysis was undertaken by Sripad and Snyder [8], whose work was

in turn extended with corrections by Sherwood [9]. Sherwood's paper represents

a comprehensive treatment of SD systems (short of discussing noise-shaping error

feedback, a technique not yet popular at the time of its writing).

SD systems have resisted widespread implementation due to the requirement

that the dither sequence be available for subtraction at playback time, necessitat-

ing the storage/transmission of either the sequence itselfor enough information to

reliably reconstruct it. NSD systems, which avoid this drawback, were �rst investi-

gated by Wright [10], but his �ndings were not published until recently [11]. Many

of the principal results concerning moments of the error signal were discovered inde-

pendently by Stockham and Brinton [12, 13], but again nothing was published until

lately [14]. Vanderkooy and Lipshitz [15, 16, 17, 18, 19] were the �rst to make public

the primary results regarding NSD systems, and published the �rst thoroughgoing

mathematical treatments with the author [20, 21, 22, 11, 23,24, 25, 26, 27]. These

included the �rst explorations of the higher-order statistics, including power spec-

tral densities, in such systems, as well as the �rst analysesof dithered systems with

noise-shaping error feedback.

A thorough treatment of the �rst-order statistics of NSD systems (again short

of addressing noise shaping) which uses a di�erent approachhas recently been
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published by Stockham and Gray [14].

Although a handful of individuals in the engineering community are aware of

certain results regarding dither, a number of misconceptions concerning the tech-

nique are widespread. In particular, the properties of SD and NSD quantizing

systems are often confused. One objective of this thesis is to provide a consistent

and rigorous account of the theory of dithered systems in order to promote a more

universal understanding of dithering techniques.

The next chapter provides an overview of the mathematical tools to be used in

the analysis of quantizing systems. Chapter 3 presents a short but intense develop-

ment of the crucial theory underlying dithered quantizing systems, using a general

approach with UD, SD, and NSD systems as special cases. Chapter 4 examines the

distinctive characteristics of each of these systems in detail and makes recommen-

dations for their implementation in speci�c applications. Chapter 5 examines the

related topics of spectrally-shaped dither signals, dither in noise-shaping converters,

and the e�cient generation of multi-channel dither signals. Chapter 6 extends the

theory to cover systems using discrete-valued (i.e., digital) dither signals. Chap-

ter 7 makes some closing comments. Appendix A provides a brief discussion of

generalized functions. Issues involving real-time estimation of statistical quantities

in dithered quantizing systems are discussed in Appendix B.



Chapter 2

Mathematical Background

This chapter presents a brief introduction to the mathematical devices which will be

used later, including stochastic processes and characteristic functions. The reader

is assumed to be familiar with Fourier analysis ofL1 (i.e., absolutely integrable)

functions. The de�nition of the Fourier transform maintained throughout the sequel

is

F [f ](u) =
Z 1

�1
f (x)e� j 2�ux dx: (2.1)

In some cases, ordinary functions will not suit our purposesand we will need to

resort to tempered generalized functions. (These are sometimes calledtempered dis-

tributions or Schwartz distributions, but in the body of the thesis we will eschew

this usage in order to avoid confusion with the distinct notion of probability dis-

tributions.) In particular we will make frequent use of the Dirac delta function.

Readers who are unfamiliar with the theory of generalized functions, but who have

some working familiarity with delta functions, may proceedwithout trepidation.

When references to such theory appear, they may be skipped without losing the

9
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ow of the argument. Interested readers may consult Appendix A, which provides

an outline of the theory and resolves certain mathematical issues associated with

the generalized functions appearing in this thesis.

2.1 Stochastic Processes

Much confusion concerning dither and quantization arises from an unclear or incom-

plete understanding of the terms in the discussion. With this in mind, a succinct

de�nition of the basic quantities to be discussed is in order. The discussion of

probability will use Kolmogorov's axiomatics, as outlinedbelow. For more details,

the interested reader may consult [28].

Consider a random experiment withoutcomes� 2 S, and a family B of subsets

of S such that

1. ; 2 B and S 2 B,

2. A 2 B ) S � A 2 B,

3. f Ang1
n=1 � B )

1[

n=1

An 2 B:

We assume that a probability measureP is de�ned on B; i.e., a real, nonnegative

set function P such that

1. P(S) = 1,

2. If the setsA1; A2; : : : in B are mutually disjoint then

P

 1[

n=1

An

!

=
1X

n=1

P(An):
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The triple (S;B; P) is called a probability space.

A (real) random variable, x, is any mapping

x : S ! R

such that f � 2 Sjx(� ) < � g 2 B for any � 2 R. With a random variable x one

associates a functionFx : R ! R de�ned by

Fx (� ) = P(f � 2 Sjx(� ) < � g):

This function is called thecumulative distribution function (cdf) of x. We observe

that Fx (� ) is non-decreasing and that

lim
� !�1

Fx (� ) = P(; ) = 0 ; lim
� ! + 1

Fx (� ) = P(S) = 1 :

When the cdf is everywhere di�erentiable, its derivative iscalled theprobability

density function (pdf) and is denoted bypx :

px (x) =
dFx

dx
(x):

Unfortunately, the cdf is often not di�erentiable everywhere. It is, however, locally

integrable, and thus de�nes a generalized function (see Appendix A). Since the

derivative of a generalized function is always well-de�ned, the pdf always exists as

a generalized function. It can be shown, furthermore [29], that this distribution is

de�ned by

h�; p x i =
Z 1

�1
� (x)dFx(x) 8� 2 S

whereS is a space oftest functions. Thus we may either treat pdf's as generalized

functions, or eliminate them in favour of Stieltjes integrals.

The following theorem provides a useful characterization of cdf's [28]:
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Theorem 2.1 (Lebesgue's Decomposition Theorem) A cdf F (x) can be writ-

ten as

F (x) = � 1Fd(x) + � 2Fc(x) + � 3Fs(x)

where� 1, � 2 and � 3 are nonnegative real numbers such that

� 1 + � 2 + � 3 = 1

and Fd(x), Fc(x) and Fs(x) are, respectively, a purely discontinuous cdf, an abso-

lutely continuous cdf, and a singular cdf.

The singular functionFs(x) is a continuous function whose derivative is zero almost

everywhere (in Lebesgue measure) and which is not a constant. Such functions do

not occur in practice and we will make the common assumption that � 3 = 0 for the

random quantities under consideration in the sequel. The function Fc(x) possesses

a density corresponding to an ordinary function. The purelydiscontinuous function

Fd(x) is constant except on at most a countable set of discontinuities. Thus Fd(x)

represents a countable sum of step functions so that the corresponding density is a

countable sum of Dirac delta functions (see Appendix A).

We may also speak of thejoint cdf, of a pair of random variables,x and y, as

Fx;y (� x ; � y) = P(f � 2 Sjx(� ) < � x ^ y(� ) < � yg):

The correspondingjoint pdf is

px;y (x; y) =
@2Fx;y

@x@y
(x; y)

where the derivatives are always meaningful in the sense of generalized functions.

Corresponding de�nitions are possible in the case of more than two random vari-

ables.
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We say that two random variablesx and y are statistically independentif it is

possible to write

Fx;y (x; y) = Fx (x)Fy(y)

or, equivalently,

px;y (x; y) = px (x)py(y):

The marginal cdf 's, Fx and Fy are recoverable fromFx;y as limits at in�nity; for

instance

Fx (� x) = P(f � 2 Sjx(� ) < � xg)

= P(f � 2 Sjx(� ) < � x ^ y(� ) < 1g )

= lim
� y !1

Fx;y (� x ; � y)

or, equivalently,

px (x) =
Z 1

�1
px;y (x; y)dy:

Also of interest areconditional pdf 's (cpdf 's). Any function pxjy such that

px;y (x; y) = pxjy(x; y)py(y)

is referred to as aversion of the conditional pdf.Clearly x and y are statistically

independent if and only if pxjy(x; y) = px (x). We also observe that ifpy(y) =

� (y � y0), y0 2 R, then

px(x) =
Z 1

�1
px;y (x; y)dy

=
Z 1

�1
pxjy(x; y)� (y � y0)dy

= pxjy(x; y0):

Thus pxjy(x; y0) may be interpreted as the pdf ofx given that y assumes a value

y0 2 R [30]. Note that if px in no way depends on the choice ofpy, then pxjy(x; y) is
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a function of x alone so thatx and y are statistically independent no matter howy

is distributed. Thus the requirement that the pdf ofx be una�ected by the choice

of pdf for y ensures that these random variables are statistically independent for

any choice ofpy .

Now consider a probability space (S;B; P) and any set T , called a parameter

set. A collection f x(�; t ); t 2 T g of random variables onS is called astochasticor

random process. Usually we will simply refer to this random process asx and we

will use the termssignal and random process interchangeably. For our purposest

represents a time parameter so thatT is either R or Z, in which case a random

process represents a family of time functions (continuous or discrete, respectively),

one for each� 2 S. Individually these are usually calledsample functionsand

may correspond, for instance, to data records from single experimental trials. For

a speci�c time value, t i , the expressionx(�; t i ) represents a quantity dependent on

� (i.e., a random variable), which we will sometimes denote byx i for convenience.

We de�ne the pdf px (x; t ) of a random processx so that px(x; t i ) is the pdf of

the random variablex(�; t i ). We can also form thejoint pdf px1 ;x2 (x1; x2; t1; t2) of

the random variablesx1 and x2 wheret1 � t2 6= 0. The explicit time dependence of

these quantities will often be omitted where it may be understood from the context.

A random processx is said to be(�rst-order) stationary in the strict sense if

its pdf is independent of time; i.e., if

px (x; t ) = px (x; t + � ) 8� 2 T :

If

px1 ;x2 (x1; x2; t1; t2) = px1 ;x2 (x1; x2; t1 + �; t 2 + � ) 8� 2 T

whenever t1 6= t2 then the process is said to besecond-order stationary in the
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strict sense. If all of the random variablesx i and x j are identically distributed and

statistically independent of one another wheni 6= j , then the random process is

said to beiid (independent and identically distributed).

Given px , various statistical attributes of the stochastic processcan be cal-

culated, including expected valuesof functions of x, where the expectation value

operator is de�ned by

E[f (x)](t)
4
=

Z 1

�1
f (w)dFx(w; t) =

Z 1

�1
f (w)px(w; t)dw:

This de�nition extends in an obvious fashion to expectationvalues of multivariable

functions. For these we observe that the expectation value operator is linear in the

sense that

E[f (x) + g(y)] =
Z 1

�1

Z 1

�1
[f (x) + g(y)]px;y (x; y)dxdy

=
Z 1

�1
f (x)px (x)dx +

Z 1

�1
g(y)py(y)dy

= E[f (x)] + E[g(y)]:

When E[jxjk ] exists, thek-th moment of x is de�ned as:

E[xk ](t)
4
=

Z 1

�1
wkpx (w; t)dw:

The zeroth moment of any random process is identically equalto unity; i.e.,

E [x0](t) = E[1](t) = 1 :

The �rst moment is usually referred to as themean of the process. The term

variance refers to the quantity

E
h
(x � E[x])2

i
(t) = E[x2](t) � E 2[x](t);
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so that if the mean of a random process is zero then its variance and second moment

are equal. We emphasize that, in general, these quantities manifest an explicit time

dependence, although hereafter it may be omitted unless explicitly required.

The quantity

E
h
(x1 � E [x1])(x2 � E [x2])

i
(t1; t2)

=
Z 1

�1

Z 1

�1
(x1 � E [x1])(x2 � E [x2])px1 ;x2 (x1; x2; t1; t2)dx1dx2

is called theautocovariance functionof the random processx. The joint moment

E[x1x2](t1; t2) is called theautocorrelation function of the random process, so that

if the process has zero mean then its autocovariance and autocorrelation functions

are equal. If

E [x1x2] = E[x1]E [x2]

then the random variablesx1 and x2 are said to beuncorrelated,and if

E[x1x2] = 0

then they are said to beorthogonal. If x1 and x2 are statistically independent then

they are uncorrelated, and if they are also zero mean then they are orthogonal, in

which case

E[(x1 + x2)2] = E[x2
1] + 2E[x1x2] + E[x2

2] = E[x2
1] + E[x2

2]:

A random process is said to bestationary in the wide senseif

E[x](t) = E[x](0);

a constant for all t, and

E[x1x2](t1; t2) = E[x1x2](t1 � t2; 0)
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for any t1; t2. That is, E[x1x2](t1; t2) depends only on the di�erence oft1 and t2.

In this case we let� = t1 � t2 and use the notation

r x(� ) = E[x1x2](� ):

A random process is obviously wide-sense stationary if it issecond-order strict-

sense stationary, but the converse is not necessarily true.The power spectral density

(PSD) of a wide-sense stationary random process is de�ned as the Fourier transform

of its autocorrelation function:

PSDx (u) = F [r x ](u):

When considering a random process in a sampled-data system we will for clarity

write r x(k); k 2 Z instead of r x (� ); � 2 T . Its PSD may be calculated fromr x (� )

using delta functions at sampling intervals, or by using thediscrete-time Fourier

transform (DTFT) [31]:

FDT [r x ](u) = 2 T
1X

k= �1

r x (k)e� j 2�kT u

where T is the sampling period of the system. This de�nition is normalized such

that
Z 1

2T

0
FDT [r x ](u)du = r x (0);

which is the variance of the random process. The upper limit of integration, 1
2T ,

is referred to as theNyquist frequencyof the system and is equal to half of the

sampling frequency.
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2.2 Characteristic Functions

An expectation of particular interest is the so-calledcharacteristic function or cf

of a random variablex:

Px(u)
4
= E[e� j 2�ux ]

whereu is a real variable.1 Thus the cf of a random variable is precisely the Fourier

transform of its pdf. We will denote cf's of random variablesusing upper caseP's,

while reserving lower casep's for their pdf's.

We observe that the cf always exists since

�
�
�
�

Z 1

�1
e� j 2�ux dFx(x)

�
�
�
� �

Z 1

�1
dFx(x) = 1 :

Furthermore we have the following.

Theorem 2.2 The cf 's of two random variables are identical if and only if their

pdf 's are identical.

A proof may be found, for instance, in [28] and is simply a uniqueness proof for

Fourier transforms. (Alternatively, viewing the quantities involved as generalized

functions, we may appeal to the unicity results in Appendix A.) We conclude that

the pdf and cf are equivalent descriptions of a random variable.

The characteristic function is a very useful tool in applications. The following

theorems indicate some of the reasons why this is so. The �rstfollows directly from

the de�nition of the cf.
1Some authors usePx (u) = E[ej 2�ux ]. The choice of de�nition is a matter of preference since

the results only di�er by a complex conjugation.
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Theorem 2.3 Two random variables,x and y, are statistically independent if and

only if their joint cf can be written as a product:

Px;y (ux ; uy) = Px (ux)Py(uy):

Theorem 2.4 Given two random variablesx and y,

Px (u) = Px;y (u; 0):

Proof :

E[e� j 2� (xu x + yuy ) ]

�
�
�
�
�
uy =0

=
Z 1

�1

Z 1

�1
e� j 2�xu x dFx;y (x; y)

=
Z 1

�1
e� j 2�xu x dFx (x)

= E[e� j 2�xu x ]:

2

Theorem 2.5 If x and y are two random variables, andz = ax + by is a third

wherea; b2 R, then

Pz;x;y (uz; ux ; uy) = Px;y (ux + auz; uy + buz):
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Proof :

pzj(x;y )(z; x; y) = � (z � ax � by)

so

pz;x;y (z; x; y) = � (z � ax � by)px;y (x; y):

This product of generalized functions (see Appendix A) is a composition of the

tensor product � (z)px;y (x; y) with a linear coordinate transformation

A

2

6
6
6
6
6
4

z

x

y

3

7
7
7
7
7
5

where

A =

2

6
6
6
6
6
4

1 � a � b

0 1 0

0 0 1

3

7
7
7
7
7
5

:

The Fourier transform of the tensor product isPx;y (ux ; uy), det(A) = 1 and

A � 1 =

2

6
6
6
6
6
4

1 0 0

a 1 0

b 0 1

3

7
7
7
7
7
5

so by Theorem A.4(viii) we obtain the result.

2

We observe that a trivial generalization is allowed: if random variables other than

z; x and y appear in the densities, these are una�ected; e.g.,

Pz;x;y;w (uz; ux ; uy; uw) = Px;y;w (ux + auz; uy + buz; uw):
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Corollary 2.1 If x and y are two random variables, andz = ax + by is a third

wherea; b2 R, then

Pz(u) = Px;y (au; bu):

Proof : Apply Theorem 2.4 to the result of Theorem 2.5.

2

If we de�ne the convolution of two absolutely integrable functionsf and g by

[f ? g](x)
4
=

Z 1

�1
f (x � w)g(w)dw

then we also have the following. (This de�nition can be extended to include appro-

priate pairs of generalized functions; see Appendix A.)

Corollary 2.2 If x and y are two statistically independent random variables, and

z = x + y is a third, then

Pz(u) = Px(u)Py(u)

and

pz(x) = [ px ? py ](x):

Proof : The �rst equation follows from the previous corollary and Theorem 2.3.

Taking the Fourier transform of the second equation and interchanging the order

of integration yields the �rst.

2
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Theorem 2.6 If the �rst n moments of a random variablex exist, then Px (u) is

n times di�erentiable and

E[xk ] =
� j

2�

� k

P (k)(0) k = 1; 2; : : : ; n: (2.2)

Proof : Considern = 1. If E [jxj] exists, then

E[xe� j 2�ux ] =
Z 1

�1
xe� j 2�ux dF(x)

converges uniformly inu. Thus

P (1) (u) =
Z 1

�1
� j 2�xe � j 2�ux dF(x):

In particular,

P (1) (0) = � j 2�E [x]:

The result for highern follows by iteration of the above procedure.

2

For our purposes we will consider only signals all of whose moments exist, so

that the theorem holds for anyn. The result is easily extended to yield

E[xm yn ] =
� j

2�

� m+ n

P (m;n )
x;y (0; 0);

where we take this opportunity to establish the useful convention

f � (x) = f (� 1 ;� 2 ;::: ;� N )(x1; x2; : : : ; xN )

=
@j � j f

@� 1 x1@� 2 x2 : : : @� N xn
(x1; x2; : : : ; xN );
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where j� j = � 1 + � 2 + : : : + � N . � is referred to as amulti-index.

We will now establish some general properties of characteristic functions which

will prove useful in the sequel. The following is but the briefest of samplings, drawn

from the extensive surveys in [33, 34].

Theorem 2.7 The characteristic function, P(u), of a random variable has the

following properties foru 2 R:

(i) P(u) is a uniformly continuous function ofu;

(ii) P(0) = 1 ;

(iii) jP(u)j � 1;

(iv) if there exists u0 6= 0 such that jP(u0)j = 1, then p is a lattice distribution

p(x) =
1X

k= �1

ck �

 

x �
k + !

u0

!

where! 2
h
� 1

2 ; 1
2

�
. If Re P(u0) = 1 then ! = 0.

Proof :

(i)

jP(u1) � P(u2)j = jE[(e� j 2� (u1 � u2 )x � 1)e� j 2�u 2x ]j

� E [je� j 2� (u1 � u2 )x � 1j]

! 0 asju1 � u2j ! 0:

(ii)

E [e� j 2� (0)x ] = E[1] = 1:
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(iii)

jE [e� j 2�ux ]j � E [je� j 2�ux j] = 1:

(iv) There must exist ! 2
h
� 1

2; 1
2

�
such that P(u0)ej 2�! = 1; i.e., such that

E[e� j 2�u 0x ]ej 2�! = E[1]:

(If Re P(u0) = 1 we may take ! = 0.) Taking real parts, this implies that

E[1 � cos(2� (u0x � ! ))] = 0 :

The result follows since 1� cos(2� (u0x � ! )) > 0 unlessu0x � ! = k 2 Z.

2

2.3 De�nitions Regarding Dithered Quantizing

Systems

Fig. 2.1 shows a quantizing system of a generalized sort, with SD and NSD systems

representing speci�c instances of this generalized one. The system inputis denoted

by x, the system outputby y, the quantizer input by w, and thequantizer outputby

w0. The signalsq and " represent thequantization error and the total error of the

system, respectively.� represents a strict-sense stationarydither process, which is

usually chosen to be statistically independent ofx although this assumption will not

be made in the sequel except where it is stated explicitly. The signal� 0 can assume

one of two forms depending upon the speci�c type of system under consideration.
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Figure 2.1: Schematic of a generalized dithered quantizingsystem.

If � 0 � � � then the system is SD, whereas if� 0 � 0 then an NSD system is under

consideration. If � � � 0 � 0 then the system is undithered.

We assume a uniform in�nite quantizer with step size �. The corresponding

transfer characteristics can be expressed analytically interms of the input to the

quantizer, w, and the quantizer step size, �, as

Q(w) = �
� w

�
+

1
2

�

(2.3)

for a mid-tread quantizer, or

Q(w) = �
� w

�

�

+
�
2

(2.4)

for a mid-riser quantizer, where the \
oor" operator, b c, returns the greatest

integer less than or equal to its argument. These quantizersalways round up at
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step edges; i.e.,Q(k� + 1
2) = ( k + 1)� for any k 2 Z. We could just as easily

specify quantizers which round down at step edges, orstochastic quantizerswhich

round either up or down at step edges with equal probability.Throughout the

sequel, mid-tread stochastic quantizers will be assumed unless otherwise noted. All

formulas will, however, possess analogues for mid-riser quantizers and all results

stated as theorems are valid for either mid-tread or mid-riser types. We will see

that the choice of a stochastic quantizer is the most convenient from a mathematical

point of view, as it permits statistical modelling of the quantizer using certain

products of generalized functions (see Appendix A). When appropriate, di�erences

between stochastic and deterministic quantizers will be discussed, although these

are usually not signi�cant in practice since a dithered analogue signal will reside at

the quantizer step edges with probability zero.

It is opportune to introduce a class of dither signals which we will show to have

special useful properties. We begin by de�ning auniformly distributed random

process as one with a pdf of the form

p(x) = � � (x); (2.5)

where therectangular window functionof width �, � � , is de�ned as

� � (x)
4
=

8
>>>>>>>><

>>>>>>>>:

1
�

; jxj <
�
2

;

1
2�

; jxj =
�
2

;

0; otherwise.

(2.6)

The pdf of Eq. (2.5) will be referred to as auniform or RPDF (for Rectangular

Probability Density Function). By direct calculation the moments of a uniformly
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distributed random process" are found to be

E[" ] = 0 (2.7)

E["2] =
� 2

12
(2.8)

E["m ] =

8
>>><

>>>:

1
m + 1

� �
2

� m

; for m even,

0; for m odd.

(2.9)

The cf of a uniformly distributed process is

P(u) =
sin(� � u)

� � u
:

This function is commonly referred to as a \sinc" function2, and we will often use

the notation

sinc (u)
4
=

sin(� � u)
� � u

:

Now denote byZN
0 the space of all orderedN -tuples (k1; k2; : : : ; kN ) with integer

components with the exclusion of 0 = (0; 0; : : : ; 0). Thus, in particular, Z0 is the

set of all integers except zero. Then we will refer to an iid dither whose cf,P� ,

obeys the condition

P (m)
�

 
k
�

!

= 0

for m = 0; 1; 2; : : : ; n � 1; and 8k 2 Z0

as adither of order n. We shall see that dithers of this type are normally chosen

for use in applications because of their desirable e�ects onthe error signals.

2Actually, in much of the literature this function would be ca lled sinc (� u), but the stated

de�nition is more convenient for our purposes and will be retained in the sequel.
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The conditions for a dither to be of ordern may also be expressed in terms of

its pdf, although these are not as useful from a practical standpoint. Straightfor-

ward application of Poisson's summation formula (Theorem A.7) and the derivative

property of Fourier transforms (Theorem A.4(v)) reveals that if and only if a dither

is of ordern then its pdf obeys

(xm p� (x)) ? W� (x) = E[� m ];

a constant, form = 0; 1; : : : ; n � 1, where have made use of theimpulse train

W� (x)
4
=

1X

k= �1

� (x � k�) :

In particular, for a dither of order greater than or equal to zero we have

1X

k= �1

p� (x � k�) = 1 :

An example of a dither of ordern is the so-called \nRPDF dither" produced

by summing n statistically independent uniformly distributed random processes of

peak-to-peak amplitude �. Summing statistically independent random processes

convolves their pdf's, thus multiplying their cf's (see Theorem 2.2). Therefore the

cf of an nRPDF dither is

P� (u) =

"
sin(� � u)

� � u

#n

:

A general formula exists for the pdf of annRPDF random process [35], and this

may be integrated to �nd a general expression for the momentsthereof, but these

formulae are unwieldy and not very instructive. For our purposes two observations

will su�ce: �rst that all odd moments of nRPDF processes are zero since the pdf's

are even, and second that forn � 2

d2

dx2
[sinc (x)]n = n(n � 1)[sinc (x)]n� 2[sinc(1) (x)]2 + n[sinc (x)]n� 1sinc(2) (x)
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so that

E[� 2] =
� j

2�

� 2

P (2)
� (0) = n

� 2

12
:

Of course, this is just the sum of the powers ofn statistically independent uniformly

distributed random processes, as expected.

2RPDF dither, being in common use, is frequently referred toas TPDF (for

Triangular Probability Density Function), since the convolution of two uniform

pdf's is triangular in shape:

[� � ? � � ](� ) =

8
>>><

>>>:

1
�

 

1 �
j� j
�

!

; 0 � j � j < �,

0; otherwise.

3RPDF dither is sometimes referred to as PPDF (forParabolic Probability Den-

sity Function), since this pdf is piecewise parabolic. We observe that annRPDF

random process has a maximum peak-to-peak amplitude ofn� since its pdf is the

convolution of n uniform pdf's.



Chapter 3

A General Theory of Dithered

Quantization

This chapter presents a general theory of dithered quantization, with undithered

(UD), subtractively dithered (SD) and non-subtractively dithered (NSD) systems

as special cases to be elucidated later. Included is a thorough analysis of the

statistical relationships between the signals indicated in Fig. 2.1. The approach

used is to derive the joint cf of all random variables of interest so that the joint

cf's of subsets of these variables are easily found by setting unwanted arguments to

zero (see Theorem 2.4).

We de�ne the vector

x
4
=( x1; x2; x3; : : : ; xN ) 2 R N

where the components representN system input values occurring at distinct times.

That is, x1 and x2, say, represent distinct but not necessarily successive values of

30
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the system input. The following vectors inR N are de�ned in an analogous fashion:

�; w; w 0; � 0; y; "; q:

Corresponding entries in each vector are taken to be simultaneous.

Furthermore we de�ne the vector

r
4
=( q; "; y; � 0; w0; w; �; x ) 2 R 8N :

Taking N = 1 corresponds to considering the system at a single instantin time,

and the reader should feel free to considerN = 1 upon a �rst reading if this aids

in understanding. It turns out that taking N � 1 does not much complicate the

analysis since each signal present in the system at any giventime can be expressed

algebraically in terms of the signalsx and � present at that time without reference

to any later or earlier signal values. Initially we will makeno assumptions regard-

ing the statistical relationship betweenx and � , since this may be complicated,

with signal values at di�erent instants in time a�ecting one another. (This is the

case, for instance, when noise shaping error feedback is present in the system; see

Section 5.2.)

Using the de�nition of conditional probability [30] we have

pr (r ) = pqj";y;� 0;w0;w;�;x (r )

� p" jy;� 0;w0;w;�;x (r )

� pyj� 0;w0;w;�;x (r )

� p� 0jw0;w;�;x (r )

� pw0jw;�;x (r )

� pwj�;x (r )

� p�;x (r ): (3.1)
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We will proceed to write down an expression for each quantityin this product.

Sincew � x + � we have

pwj�;x (r ) = � (w � � � x)

where the delta function with a vector argument is de�ned as atensor product of

delta functions:

� (x)
4
=

NY

i =1

� (x i ):

Consider the special case whereN = 1 so that all function arguments are scalars

and only one instant in time is involved. Quantizer output values are restricted to

multiples of �, so we can write pw0jw;�;x (r ) as a product of the impulse train

W� (w0)
4
=

1X

k= �1

� (w0 � k�) :

with an appropriate window function. If a quantizer input value, w, satis�es

(2n � 1)� =2 < w < (2n + 1)� =2

for somen 2 Z, then the quantizer output value isn�. Thus we can use a rect-

angular window function of width � to select the appropriate delta function from

W� (w0). In particular, we can write1

pw0jw;�;x (r ) = �� � (w0 � w)W� (w0): (3.2)

1The astute reader may observe that the case wherew falls at a quantizer step edge has been

neglected. The indicated product of generalized functionsin fact represents the cpdf of astochastic

quantizer, as is discussed in detail in Appendix A. Forw = (2 n +1)� =2 the output of a stochastic

quantizer is either n� or ( n + 1)� with equal probability.
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Since quantizations occurring at di�erent times have no e�ect on one another, the

treatment is trivially extended to handle N � 1 by de�ning the following scalar

functions of vector arguments:

� � (x)
4
=

NY

i =1

� � (x i )

and

W� (x)
4
=

NY

i =1

W� (x i )

=
X

k2 Z N

� (x � k�)

where

k
4
=( k1; k2; k3; :::; kN ) 2 ZN :

With these de�nitions, Eq. (3.2) applies whenN � 1.

Now since

� 0 =

8
>>>>><

>>>>>:

0; UD systems,

0; NSD systems,

� �; SD systems,

q = w0 � w

" = y � x

y = � 0+ w0 (3.3)
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the other conditional pdf's are of the following obvious forms:

p� 0jw0;w;�;x (r ) =

8
>>>>><

>>>>>:

� (� 0); UD systems,

� (� 0); NSD systems,

� (� 0+ � ); SD systems.

pqj";y;� 0;w0;w;�;x (r ) = � (q � w0+ w);

p" jy;� 0;w0;w;�;x (r ) = � (" � y + x);

pyj� 0;w0;w;�;x (r ) = � (y � � 0 � w0):

We now wish to form the product in Eq. (3.1) and to �nd its Fourier transform.

We begin with

pw;�;x (r ) = pwj�;x (w; �; x )p�;x (�; x ):

Using Theorem 2.5, the associated joint cf is given by

Pw;�;x (uw; u� ; ux ) = P�;x (u� + uw; ux + uw):

Then

pw0;w;�;x (r ) = pw0jw;�;x (w0; w; �; x )pw;�;x (w; �; x )

= �� � (w0 � w)W� (w0)pw;�;x (w; �; x )

= f A � [�� � (w0)pw;�;x (w; �; x )]gW� (w0) (3.4)

where we useA � to denote composition with a linear coordinate transformation of

(w0; w; �; x ) with transformation matrix

A =

2

6
6
6
6
6
6
6
6
4

1 � 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

7
7
7
7
7
7
7
7
5

:
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Using Theorems A.4(viii) and A.5 from Appendix A we obtain the convolution

Pw0;w;�;x (uw0; uw; u� ; ux)

= f sinc (uw0)Pw;�;x (uw0 + uw ; u� ; ux)g ? W 1
�

(uw0) (3.5)

=
X

k2 Z N

sinc

 

uw0 �
k
�

!

Pw;�;x

 

uw0 + uw �
k
�

; u� ; ux

!

=
X

k2 Z N

sinc

 

uw0 �
k
�

!

P�;x

 

uw0 + uw + u� �
k
�

; uw0 + uw + ux �
k
�

!

:

The result is valid for N � 1 with the de�nition

sinc (x)
4
=

NY

i =1

sinc (x i ):

The remaining factors in Eq. (3.1) are handled by repeated application of The-

orem 2.5 using Eqs. (3.3). For the Fourier transform variables involved we will use

the shorthand

ur
4
=( uq; u" ; uy; u� 0; uw0; uw; u� ; ux) 2 R 8N :

In an NSD system we have

Pr (ur ) = P";y;� 0;w0;w;�;x (u" ; uy; u� 0; uw0 + uq; uw � uq; u� ; ux)

= Py;� 0;w0;w;�;x (uy + u" ; u� 0; uw0 + uq; uw � uq; u� ; ux � u" )

= P� 0;w0;w;�;x (u� 0 + uy + u" ; uw0 + uy + u" + uq; uw � uq; u� ; ux � u" )

= Pw0;w;�;x (uw0 + uy + u" + uq; uw � uq; u� ; ux � u" ):

In an SD system,

Pr (ur ) = P";y;� 0;w0;w;�;x (u" ; uy; u� 0; uw0 + uq; uw � uq; u� ; ux)

= Py;� 0;w0;w;�;x (uy + u" ; u� 0; uw0 + uq; uw � uq; u� ; ux � u" )

= P� 0;w0;w;�;x (u� 0 + uy + u" ; uw0 + uy + u" + uq; uw � uq; u� ; ux � u" )

= Pw0;w;�;x (uw0 + uy + u" + uq; uw � uq; u� � u� 0 � uy � u" ; ux � u" ):
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For a UD system" = q, w0 = y, w = x and � 0 = 0. We can treat such a system

as a special case of SD (or NSD) systems by settingu" , uw0, uw and u� to zero and

using P�;x (0; ux) = Px(ux ). The following relatively simple result is obtained:

Theorem 3.1 In an undithered quantizing system

Pq;y;x(uq; uy; ux) =
X

k2 Z N

sinc

 

uq + uy �
k
�

!

Px

 

uy + ux �
k
�

!

: (3.6)

The results for SD and NSD systems are somewhat more complicated looking.

Theorem 3.2 In an SD quantizing system

Pr (ur ) =
X

k2 Z N

sinc

 

uq + u" + uy + uw0 �
k
�

!

� P�;x

 

� u� 0 + uw0 + uw + u� �
k
�

; uy + uw0 + uw + ux �
k
�

!

: (3.7)

Theorem 3.3 In an NSD quantizing system

Pr (ur ) =
X

k2 Z N

sinc

 

uq + u" + uy + uw0 �
k
�

!

� P�;x

 

u" + uy + uw0 + uw + u� �
k
�

; uy + uw0 + uw + ux �
k
�

!

: (3.8)

Now �nding cf's or joint cf's of particular signals is straightforward since, accord-

ing to Theorem 2.4, we only need to set the unwanted Fourier transform variables
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to zero. For instance, for both SD and NSD systems withN = 1 we obtain the

same expression forPq by setting all variables exceptuq to zero:

Pq(uq) =
1X

k= �1

sinc

 

uq �
k
�

!

P�;x

 

�
k
�

; �
k
�

!

:

If � and x are assumed to be statistically independent,P�;x splits into a product

yielding

Pq(uq) =
1X

k= �1

sinc

 

uq �
k
�

!

P�

 

�
k
�

!

Px

 

�
k
�

!

:

Similarly, the cf of " in an NSD system where� and x are statistically independent

is:

P" (u" ) =
1X

k= �1

sinc

 

u" �
k
�

!

P�

 

u" �
k
�

!

Px

 

�
k
�

!

:

The corresponding expression forP" in an SD system is di�erent. It is identical to

the expression given above forPq since, in an SD system,q � " .



Chapter 4

Practical Quantizing Systems

In this chapter we proceed from the general to the speci�c, interpreting the results

obtained above with regard to particular realizations of quantizing systems. We

begin, however, with a brief description of the classical model of undithered quan-

tization in order that it may be contrasted with the more sophisticated treatment

to follow.

4.1 The Classical Model of Undithered Quanti-

zation

We have seen that in an undithered quantizing system

" = q(x):

Although this is a deterministic function of the input, the classical modelof quan-

tization treats this error as an additive iid random processwhich is independent of

38
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the input and uniformly distributed. In particular, the quantization error variance

(or \power") is taken to be � 2=12 in the classical model [36].

This model of quantization error is suitable for complex (quasi-random) input

signals which are large relative to an LSB. It fails catastrophically for small or simple

signals where, in undithered systems, the quantization error retains the character

of input-dependent distortion and/or noise modulation.

The non-random nature of the error can be demonstrated by using a computer

to simulate the undithered quantization of a very simple signal: say, a 1 kHz sine

wave of 4.0 LSB peak-to-peak amplitude. Fig. 4.1 shows the system input and

output from such a simulation, as well as the resulting totalerror signal, and the

estimated power spectrum of the system output. Evidence of the input signal is

clearly visible in the total error waveform. In the power spectrum, many sharp

peaks fall at multiples of the input sine wave frequency, indicating not only a high

degree of non-random structure (i.e., harmonic distortion) in the error signal, but

also a strong relationship between this signal and the system input.

The substantial discrepancies between the classical modelof quantization and

the observed behaviour of quantizing systems helped to spurthe development of

more sophisticated models of this process.

4.2 Widrow's Model of Undithered Quantization

A generalized statistical model of undithered quantization, valid for inputs with

arbitrary statistical properties, was �rst developed by Widrow [2, 3, 4] in the 1950's.

Widrow realized that quantizing a signal transforms its pdfinto a train of weighted
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Figure 4.1: Results from the computer-simulated quantization of a 1 kHz sine
wave of 4.0 LSB peak-to-peak amplitude without dither. Shown are (a) the
system input signal, (b) the system output signal, (c) the resulting total error
signal, and (d) the power spectrum of the system output signal (as estimated
from sixty 50%-overlapping Hann-windowed 512-point time records with an
assumed sampling frequency of 44.1 kHz; 0 dB represents a power spectral
density of � 2T=6 where T is the sampling period).
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impulse functions in a fashion reminiscent of time-sampling, so that recovery of the

system input statistics from those of the system output mustrequire conditions

analogous to those of Sampling Theorem [1]. The developmenthere di�ers from

Widrow's in its details, the results are somewhat strengthened, and the proofs are

new, but the essential nature of the approach owes much to hisoriginal.

4.2.1 UD Systems: Statistics of the Total Error

We begin by considering the statistical relationships between variables in the system

at some given instant in time. (This corresponds to choosingN = 1, but in fact

the argument is identical forN > 1.) Setting uy = 0 in Eq. (3.6) we obtain

Pq;x(uq; ux) =
1X

k= �1

sinc

 

uq �
k
�

!

Px

 

ux �
k
�

!

: (4.1)

If qandx are to be statistically independent, this must equal the product Pq(uq)Px (ux).

Then, letting uq = `=�, we have

Pq

 
`
�

!

Px (ux) = Px

 

ux �
`
�

!

:

Now we must have �
�
�
�
�
Pq

 
`
�

! �
�
�
�
�

= 1; 8` 2 Z

otherwisejPx(ux )j > 1 for some value ofux , which is impossible for a characteristic

function (by Theorem 2.7(iii)). Then, letting ux = 0 we have
�
�
�
�
�
Px

 
`
�

! �
�
�
�
�
= 1; 8` 2 Z:

Thus, by Theorem 2.7(iv), px and pq are both lattice densities of delta functions

separated by intervals of width �. That is

px (x) =
1X

k= �1

ck � (x � (k + ! )�)



CHAPTER 4. PRACTICAL QUANTIZING SYSTEMS 42

for some! 2
h
� 1

2; 1
2

�
. Of course, this means that

pq(q) = � (q+ ! �)

so that the quantization error has a �xed value1 of � ! �. Clearly this is statistical

independence in only a purely formal sense and certainly does not imply that the

error distribution is independent of the input distribution.

It is natural to wonder under what conditions q exhibits a uniform pdf of the

sort assumed in the classical model.

Theorem 4.1 The total error produced by an undithered quantizing systemis uni-

formly distributed if and only if the cf of the system input,Px , satis�es the condition

that

Px

 
k
�

!

= 0 8k 2 Z0:

Proof : Setting ux = 0 in Eq. (4.1) yields

Pq(uq) =
1X

k= �1

sinc

 

uq �
k
�

!

Px

 

�
k
�

!

: (4.2)

If the error is to be uniformly distributed, Eq. (4.2) must reduce to a single sinc

function centred at the origin. Thus the \if" direction is immediate. To prove \only

if" suppose that

sinc (uq) =
1X

k= �1

sinc

 

uq �
k
�

!

Px

 

�
k
�

!

:

1Assuming a stochastic quantizer,! = � 1
2 is a special case in which system outputs of� � =2

are produced with equal probability.
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Now let uq = `=� where ` 2 Z0. This yields

0 =
1X

k= �1

sinc

 
` � k

�

!

Px

 

�
k
�

!

= Px

 

�
`
�

!

:

2

There are at least two other ways of showing this result. Firstly, we may write

Eq. (4.2) as

Pq(u) = sinc (u) ?
h
Px � W 1

�

i
(� u);

the inverse Fourier transform of which is (see Theorem A.5):

pq(q) = �� � (q) [px ? W� ] (� q):

Using Poisson's summation formula (Theorem A.7) we have

� [ px ? W� ] (� q) = �
1X

k= �1

px (� q � k�)

=
1X

k= �1

Px

 

�
k
�

!

e� j 2�kq= � :

If and only if the conditions of the theorem hold, the last summation reduces to

Px (0) = 1 so that pq = � � .

One may also reason as follows (after Gray and Stockham [14]). pq can be

non-zero only on
�
� �

2 ; �
2

�
, so that we may expand it as a Fourier series on this

interval:

pq(q) =
1
�

1X

k= �1

ckej 2�kq= �
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where

ck =
Z � =2

� � =2
pq(q)e� j 2�kq= � dq

= E
h
e� j 2�kq= �

i

= E
�

e� j 2�k (bx
� + 1

2 c� x
� )

�

= E
h
ej 2�kx= �

i

= Px

 

�
k
�

!

:

Here we have used Eq. (2.3) and the fact that the 
oor operatorreturns an integer.

We see thatpq(q) = 1
� on

�
� �

2 ; �
2

�
if and only if the conditions of Theorem 4.1

hold.

The conditions in the theorem are not actually due to Widrow but to Sripad

and Snyder [8]. Widrow [4] cites a di�erent condition, whichis su�cient but not

necessary; viz.,Px (u) = 0 for juj � 1=�. Widrow calls this requirement \half-

satisfaction" of the conditions of the Quantizing Theorem (cf. Theorem 4.3).

Note that if the requirements of Theorem 4.1 are satis�ed, then the error is

of the sort which is postulated by the classical model insofar as it is uniformly

distributed with moments given by Eq. (2.9). Note also, however, that the error is

not formally statistically independent of the input since
�
�
�
�
�
Px

 
k
�

! �
�
�
�
�

6= 1 for k 6= 0:

The statistical relationships between pairs of total errorvalues separated in time

are of particular interest since these determine the power spectral characteristics of

the total error signal. Consider two system input values,x1 and x2, occurring at

times t1 and t2, respectively, so that they are separated in time by� = t2 � t1 where
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� 6= 0. Their statistical relationship is described by their joint pdf, px1 ;x2 (x1; x2).

Taking N = 2 in Eq. (3.6) and letting (uy1 ; uy2 ) = (0 ; 0) yields

Pq1 ;q2;x1 ;x2 (uq1 ; uq2 ; ux1 ; ux2 ) =
1X

k1= �1

1X

k2= �1

sinc

 

uq1 �
k1

�

!

sinc

 

uq2 �
k2

�

!

� Px1 ;x2

 

ux1 �
k1

�
; ux2 �

k2

�

!

:

Proceeding as before, it is straightforward to show that this only splits into a

product of Pq1 ;q2 (uq1 ; uq2) with Px1 ;x2 (ux1 ; ux2 ) when the latter is a two-dimensional

lattice distribution. Setting ( ux1 ; ux2) = (0 ; 0) yields

Pq1 ;q2(uq1 ; uq2 ) =
1X

k1= �1

1X

k2= �1

sinc

 

uq1 �
k1

�

!

sinc

 

uq2 �
k2

�

!

Px1 ;x2

 

�
k1

�
; �

k2

�

!

which leads to the following second-order version of Theorem 4.1:

Theorem 4.2 In an undithered quantizing system, the joint cf,P" 1 ;" 2 , of total error

values,"1 and "2, separated in time by� 6= 0 is given by

p" 1 ;" 2 ("1; "2) = � � ("1)� � ("2) (4.3)

if and only if the joint cf, Px1 ;x2 , of the corresponding system inputs,x1 and x2,

satis�es the condition that

Px1 ;x2

 
k1

�
;
k2

�

!

= 0 8(k1; k2) 2 Z2
0:

Eq. (4.3) shows that, subject to the speci�ed conditions, the joint pdf of "1 and

"2 is a product of two rectangular window functions, one of which is a function

of "1 alone and the other of"2 alone. Hence the two error values are statistically



CHAPTER 4. PRACTICAL QUANTIZING SYSTEMS 46

independent of each other and each is uniformly distributed. Note that if the

conditions of Theorem 4.2 are satis�ed then so are those of Theorem 4.1.

For an undithered system satisfying the conditions of Theorem 4.2 at all times

t1 and t2, the total error is wide-sense stationary with an autocorrelation function

given by

r " (k) =

8
><

>:

E["2]; k = 0;

E["1]E ["2]; otherwise,

=

8
>>><

>>>:

� 2

12
; k = 0;

0; otherwise.

Thus its PSD is given by

PSD" (f ) =
� 2T

6
;

which is constant with respect to frequency so that the errorsignal is spectrally

white and exhibits a total power of � 2=12 up to the Nyquist frequency. In this

respect the error is of the form assumed by the classical model of quantization.

4.2.2 UD Systems: Statistics of the System Output

We now proceed to investigate the statistical properties ofthe output of an un-

dithered quantizing system.Py can be obtained immediately from Eq. (3.6) but it

is also instructive to consider Widrow's reasoning as follows [4].

The output can only assume values which are integer multiples of the quanti-

zation step size, �. Referring to Fig. 4.2, we see that the probability of an output

having valuey = k�, for some speci�ed integer k, is equal to the probability that
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y

w = x

=pw(x) )x(xp

Figure 4.2: Pdf of the quantizer input in an undithered quantizing system,
showing its justi�cation relative to the quantizer charact eristic.

the input lies between� �
2 + k� and �

2 + k�. Hence,

py(y) =
1X

k= �1

� (y � k�)
Z �

2 + k�

� �
2 + k�

px (x)dx: (4.4)

Borrowing Widrow's terminology, we say that the quantization operation performs

\area sampling" of the input distribution 2. Writing the integral in Eq. (4.4) as a

convolution of px with a rectangular window function, it reduces to

py(y) = [�� � ? px ](y)W� (y): (4.5)

Taking the Fourier transform of this expression yields (seeTheorem A.5)

Py(u) = [sinc (u)Px (u)] ? W 1
�

(u)

=
1X

k= �1

sinc

 

u �
k
�

!

Px

 

u �
k
�

!

; (4.6)

2Note that Eq. (4.4) loses its meaning whenpx contains delta functions at quantizer step edges,

but that Eq. (3.6) does not.



CHAPTER 4. PRACTICAL QUANTIZING SYSTEMS 48

which agrees with the expression obtained from Eq. (3.6).

Under what conditions arey and x identically distributed? Suppose that

Px (u) =
1X

k= �1

sinc

 

u �
k
�

!

Px

 

u �
k
�

!

;

and let u = `=� ; ` 2 Z: We �nd that

Px

 
`
�

!

= Px (0) = 1

so that, by Theorem 2.7(iv), we have

px (x) =
1X

k= �1

ck � (x � k�) :

Thus we obtain the intuitively satisfying result that py � px if and only if the input

is restricted to integer multiples of �. We will see, however, that the statistical

properties of the input can be recovered from the output subject to certain less

restrictive conditions.

It is useful to rewrite Eq. (4.6) in the form

Py(u) = Gx (u) ? W 1
�

(u)

=
1X

k= �1

Gx

 

u �
k
�

!

(4.7)

where we have de�ned

Gx (u)
4
=

sin(� � u)
� � u

Px(u): (4.8)

Hence,Py(u) consists of \aliases" of the functionGx(u) separated by intervals of

1=�. Note, however, that if Px is supported such thatPx (u) = 0 for juj � 1
2�

(i.e., if, in the parlance of signal processing,px is \bandlimited"), then the aliased

versions ofGx (u) do not overlap, allowing recovery of the input cf (and hencethe

input pdf) from that of the output by bandlimiting. Indeed, t his is [2, 3, 4]:
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Theorem 4.3 (Widrow's Quantizing Theorem) The pdf, px (x), of the input,

x, to an undithered quantizing system is recoverable from thepdf of its output if the

cf of the input, Px , is supported such thatPx(u) = 0 for juj � 1
2� .

Obviously, this theorem closely resembles the Sampling Theorem, which allows

recovery of an appropriately bandlimited analogue signal from discrete-time samples

thereof. The di�erence, of course, is that the Quantizing Theorem pertains not to

time-sampling, but to amplitude quantizing of a signal (i.e., to area-sampling of

the pdf of a signal).

It should be noted that the conditions of the Quantizing Theorem cannot be

met unlesspx (x) is not supported on a �nite interval. This must be the case

because ifPx (u) is supported on a �nite interval then its inverse Fourier transform

cannot be [37]. Widrow [4] discusses signals, such as large amplitude processes with

Gaussian distributions, which come close to satisfying theconditions. Here we will

be satis�ed with some qualitative observations. First, we have from Theorem 2.1

that

Pax (u) = Px (au); a 2 R;

so that, roughly speaking, wide pdf's have narrow cf's. Also, it can be shown [38]

that if px ; p(1)
x ; : : : ; p(n� 1)

x are continuous and tend to zero at in�nity, and p(n)
x is

absolutely integrable, then

lim
juj!1

unPx(u) = 0 ;

so that the smoother the pdf of a random variable the more rapidly its cf tends

to zero at in�nity. Thus large amplitude signals with smooth pdf's will come

closer to satisfying the Quantizing Theorem. In such cases relatively few terms

will signi�cantly contribute to Eq. (4.2) so that the quanti zation error will be more
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uniformly distributed, and it is not di�cult to show that cor relations between

samples of the error and between the error and the input diminish as well. Indeed,

it is under these conditions that the CMQ has been found to be adequate for

practical purposes.

In practice, recovering thepdf of the input is often unnecessary and it is su�-

cient to recover themomentsof the input signal from the output. These are given

by

E[ym ] =
� j

2�

� m

P (m)
y (0):

If the Quantizing Theorem is satis�ed then the aliased versions of Gx(u) do not

overlap, so that the m-th derivative of Py(u) at the origin is determined only by

the \baseband" (k = 0) term in Eq. (4.7). This is also true, however, subject to the

weaker condition that the Quantizing Theorem is only half-satis�ed (see remarks

following Theorem 4.1) or the still weaker condition that

G(m)
x

 
k
�

!

= 0 8k 2 Z0: (4.9)

If the input statistics obey this condition then

E[ym ] =
� j

2�

� m

G(m)
x (0)

=
� j

2�

� m mX

r =0

 
m
r

!

sinc(r ) (0)P (m� r )
x (0)

=
mX

r =0

 
m
r

!

E[� r ]E [xm� r ]

where � is a notional uniformly distributed random variable which is sometimes

thought of as a \quantization noise" but which, strictly speaking, is not physically

meaningful. Thus we have succeeded in expressing the moments of y in terms of
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the moments ofx. Using Eq. (2.9) we obtain the following useful relationships:

E[y] = E[x] (4.10)

E[y2] = E[x2] +
� 2

12
(4.11)

E[ym ] =
bm

2 cX

`=0

 
m
2`

! � �
2

� 2` E[xm� 2` ]
2` + 1

: (4.12)

Solving these equations to �nd the moments ofx in terms of the moments ofy

yields the well-known Sheppard's corrections for grouping[39]. We emphasize that

each of these equations forE[ym ] is only valid when Eq. (4.9) is satis�ed for that

particular value of m, and that the validity of one of these equations does not

imply the validity of any others corresponding to di�erent m values. We observe,

in particular, that if Eq. (4.9) is satis�ed for m = 2, then the variance ofy = x + "

is the same as that ofx plus a statistically independent additive random process

with uniform pdf.

We note in passing that by repeated di�erentiation of Eq. (4.8) for Gx (u) we

can derive from Eq. (4.9) the following stronger, but perhaps more practical, con-

dition in terms of the input cf, which ensures that E[ym ] obeys Eq. (4.12) for

m = 1; 2; : : : ; M :

P (i )
x

 
k
�

!

= 0

8k 2 Z0 and for i = 0; 1; 2; : : : ; M � 1:

From Eq. (3.6) with N = 2 we �nd that the joint pdf of two system output

values,y1 and y2, separated in time by� 6= 0, is given by

Py1 ;y2 (u1; u2) = Gx1 ;x2 (u1; u2) ? W 1
�

(u1)W 1
�

(u2);
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wherex1 and x2 are the corresponding system inputs and where we have de�ned

Gx1 ;x2 (u1; u2)
4
=

sin(� � u1)
� � u1

sin(� � u2)
� � u2

Px1 ;x2 (u1; u2):

We can now write a second-order analogue of the Quantizing Theorem; namely,

that the joint pdf of the input is recoverable from that of the output if

Px1 ;x2 (u1; u2) = 0 whenever ju1j �
1

2�
or ju2j �

1
2�

:

Of perhaps greater interest, however, is the second-order analogue of Eq. (4.9),

which allows us to recover the joint moments of the system input from those of the

output. That is, if

G(m1 ;m2)
x1 ;x2

 
k1

�
;
k2

�

!

= 0 8(k1; k2) 2 Z2
0

then

E[ym1
1 ym2

2 ] =
� j

2�

� m1+ m2

G(m1 ;m2)
x1 ;x2

(0; 0)

=
bm 1

2 cX

`1=0

bm 2
2 cX

`2=0

 
m1

2`1

! 
m2

2`2

! � �
2

� 2(`1+ `2) E[xm1 � 2`1
1 xm2 � 2`2

2 ]
(2`1 + 1)(2 `2 + 1)

: (4.13)

Thus, assuming thatx is wide-sense stationary,

r y(k) =

8
>>><

>>>:

E[x2] +
� 2

12
; for k = 0;

E[x1x2](k); otherwise,

(4.14)

so that the power spectral density of the output is identicalto that of the input apart

from an additive white-noise component arising from the quantization operation;

that is:

PSDy(f ) = PSD x (f ) +
� 2T

6
: (4.15)
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4.2.3 Non-Stochastic Quantizers

UD quantization is the exceptional instance when the choicebetween a stochastic

and deterministic quantizer would appear to make a di�erence to the statistical

behaviour of signals in the system. One would expect this to be the case if the

quantizer input pdf has the form

px (x) =
1X

k= �1

ck �

 

x �
2k + 1

2
�

!

:

In this case, the input falls on a quantizer step edge with non-zero probability.

Suppose that a deterministic mid-tread quantizer is chosensuch that inputs at

step edges are consistently rounded up. In this case, we can deduce the system

statistics by inspection:

pq;y;x(q; y; x) = �
�

q+
�
2

� 1X

k= �1

ck � (y � k�) �

 

x �
2k + 1

2
�

!

:

We �nd, as before, that the quantization error is formally statistically independent

of the system input but certainly not uniformly distributed. This is similar to the

result found when stochastic quantization was assumed.

4.2.4 Summary of Undithered Quantization

In a sense, the results of this section are primarily of theoretical, rather than practi-

cal, interest. All of the theorems given above impose conditions upon the statistics

of the system input, and such restrictions are usually undesirable or impossible

to meet in practice. Some not-uncommon system inputs satisfy the conditions of

Theorem 4.1 (e.g., a 1RPDF random process) so that the associated error will be
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uniformly distributed. On the other hand, however, the conditions of the Quan-

tizing Theorem (Theorem 4.3) cannot be met byany system input whose pdf is

supported on a �nite interval so that, in practice, the distribution of the system

input cannot be precisely recovered from the distribution of the system output.

There now becomes apparent, however, the possibility of dithering the system

input with a suitably chosen dither signal, � , so as to ensure that the quantizer

input, w = x + � in Fig. 2.1, satis�es some of the aforementioned conditions. In

particular, if the dither is statistically independent of the system input, then the

pdf, pw , of w is the convolution pw = px ? p� , and hence its cf is the product

Pw = Px � P� . In this case the dither statistics can be chosen so as to cause Pw

to vanish at required places, and so force the total quantizer input to meet the

conditions of, say, Theorem 4.1. This accomplishment cannot then be subsequently

undone by any system input which is statistically independent of the dither.

These tentative ideas will be developed in detail in the following sections.

4.3 Subtractive Dither

4.3.1 SD Systems: Statistics of the Total Error

In an SD system the quantizer input isw = x + � so that the output of the system

is (see Fig. 1.3(b))

y = Q(x + � ) � �:
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Hence the total error is given by

" = y � x

= Q(x + � ) � (x + � )

= q(x + � );

which is simply the quantization error,q, of the total quantizer input, w. We will

assume that� and x are statistically independent.

The following provides a new strengthening and proof of a result which was �rst

reported by Schuchman [7].

Theorem 4.4 (Schuchman's Condition) In an SD quantizing system, the to-

tal error will be statistically independent of the system input for arbitrary input

distributions if and only if the cf of the dither,P� , satis�es the condition that

P�

 
k
�

!

= 0 8k 2 Z0: (4.16)

Furthermore, the total error will be uniformly distributedfor arbitrary input distri-

butions if and only if this condition holds.

Proof : From Eq. (3.7) we obtain

P";x (u" ; ux) =
1X

k= �1

sinc

 

u" �
k
�

!

P�

 

�
k
�

!

Px

 

ux �
k
�

!

:

(4.17)

If the condition of the theorem is met, this expression splits into a product ofPx (ux)

with

P" (u" ) = sinc (u" )

so that the error is uniformly distributed and statistically independent of the input.
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Now suppose that the input has some arbitrary distribution and that the error

and input are statistically independent so that Eq. (4.17) can be written as a

product P" (u" )Px(ux ). Then if u" = `=� for some ` 2 Z0 this yields

P"

 
`
�

!

Px (ux) = P�

 

�
`
�

!

Px

 

ux �
`
�

!

:

Now if �
�
�
�
�
P�

 

�
`
�

! �
�
�
�
�

6= 0

then we must have �
�
�
�
�
P"

 
`
�

! �
�
�
�
�
=

�
�
�
�
�
P�

 

�
`
�

! �
�
�
�
�

since otherwisejPx(ux )j > 1 for someux . Thus

jPx(ux)j =

�
�
�
�
�
Px

 

ux �
`
�

! �
�
�
�
�
:

Letting ux = 0 shows that the input must have a lattice density, which contradicts

the assumption that it is arbitrarily distributed. Thus we conclude that for any

` 2 Z0 �
�
�
�
�
P�

 

�
`
�

! �
�
�
�
�
= 0:

Finally suppose that the input has some arbitrary distribution and that " is

uniformly distributed. Eq. (4.17) then gives

sinc (u" ) =
1X

k= �1

sinc

 

u" �
k
�

!

P�

 

�
k
�

!

Px

 

�
k
�

!

:

Letting u" = `=� where ` 2 Z0 then gives

0 = P�

 

�
`
�

!

Px

 

�
`
�

!

:

Sincex is arbitrarily distributed this yields the desired result.

2

The above result regarding statistical independence was not explicitly mentioned

by Schuchman [7]. It is found explicitly stated for the �rst time in [9].
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Proceeding in similar fashion, we can use Eq. (3.7) withN = 2 to deduce that for

two total error values, "1 and "2, separated in time by� 6= 0, and the corresponding

input values x1 and x2 we have [23]:

P" 1 ;" 2 ;x1;x2 (u" 1 ; u" 2 ; ux1 ; ux2)

=
1X

k1= �1

1X

k2= �1

sinc

 

u" 1 �
k1

�

!

sinc

 

u" 2 �
k2

�

!

P� 1 ;� 2

 

�
k1

�
; �

k2

�

!

� Px1 ;x2

 

ux1 �
k1

�
; ux2 �

k2

�

!

;

where P� 1 ;� 2 represents the joint pdf of dither values� 1 and � 2, applied to input

valuesx1 and x2, respectively. This leads, via the same brand of argument asused

above forN = 1, to the following conclusion:

Theorem 4.5 In an SD quantizing system, where"1 and "2 are two total error

values separated in time by� 6= 0 with corresponding input valuesx1 and x2 and

dither values� 1 and � 2, respectively, the random vector("1; "2) is statistically in-

dependent of the the random vector(x1; x2) for arbitrary input distributions if and

only if

P� 1 ;� 2

 
k1

�
;
k2

�

!

= 0 8(k1; k2) 2 Z2
0: (4.18)

Furthermore, if and only if this condition holds then

p" 1 ;" 2 ("1; "2) = � � ("1)� � ("2); (4.19)

so that "1 and "2 are both uniformly distributed and statistically independent of each

other.

It should be noted that if � 1 and � 2 are statistically independent of each other,

and the cf of each satis�es Eq. (4.16), then Eq. (4.18) will hold. This is the situation

of interest in most practical applications using subtractive dither.



CHAPTER 4. PRACTICAL QUANTIZING SYSTEMS 58

Subject to satisfaction of Eq. (4.18), the joint moments of"1 and "2 are given

by

E["m1
1 "m2

2 ] = E["m1
1 ]E ["m2

2 ];

so that "m1
1 and "m2

2 are, of course, uncorrelated. In particular, form1 = m2 = 1

E["1"2] = E["1]E ["2]

= 0:

Indeed, if the theorem is satis�ed for all� 1 and � 2 separated in time by� 6= 0, and

the conditions of Theorem 4.4 also hold, then

r " (k) =

8
>>><

>>>:

� 2

12
; k = 0;

0; otherwise.

so that

PSD" (f ) =
� 2T

6
: (4.20)

This indicates that in a properly dithered SD quantizing system the total error

signal will be spectrally white even if the dither signal is not.

4.3.2 SD Systems: Statistics of the System Output

From Eq. (3.7) we have

Py(u) =
1X

k= �1

sinc

 

u �
k
�

!

P�

 

�
k
�

!

Px

 

u �
k
�

!

: (4.21)

Now suppose that the dither signal satis�es the conditions of Theorem 4.4. Then,

since the total error is statistically independent of the input and uniformly dis-

tributed, and since the output is given byy = x + ", the cf of the output should be
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the product

Py(u) =
sin(� � u)

� � u
Px (u): (4.22)

Indeed, this is the expression to which Eq. (4.21) simpli�esunder the conditions of

the theorem. This shows that

py(y) = [ p" ? px ](y)

= [�� � ? px ](y):

The output statistics assume this simple form for arbitraryinput distributions

only if the conditions of Theorem 4.4 are met, as may be veri�ed by substituting

Eq. (4.22) into Eq. (4.21) and lettingu = `=�, ` 2 Z0.

In this case the output is precisely the sum of the input plus astatistically

independent uniformly distributed random process, and itscf and pdf exhibit the

form expected of such a sum. The moments of the output in termsof the moments

of the input are given by Eq. (4.12) above, which, in this case, is valid for all m.

Furthermore, if and only if P� 1 ;� 2 satis�es the conditions of Theorem 4.5, then

Py1 ;y2 (u1; u2) =
sin(� � u1)

� � u1

sin(� � u2)
� � u2

Px1 ;x2 (u1; u2):

Hence, the joint moments of the output in terms of the momentsof the input will

be given by Eq. (4.13) above, and Eqs (4.14) and (4.15) will hold. That is to say

that the quantization operation has merely added to the input signal a white noise

process of variance �2=12.
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4.3.3 SD Systems: Properties of Practical Dither Signals

It is naturally of interest to inquire as to which common random signals satisfy the

criterion of Theorem 4.4. Perhaps the simplest imaginable candidate is dither with

the uniform pdf

p� (� ) = � � (� )

whose corresponding cf is the sinc function:

P� (u) =
sin(� � u)

� � u
:

This cf clearly satis�es the desired condition. We concludethat 1RPDF dither

will render the total error statistically independent of the input and uniformly

distributed in a subtractively dithered quantizing system. If we assume that values

in the dither sequence are iid then the criterion of Theorem 4.5 is also satis�ed

and distinct values in the total error sequence are statistically independent of one

another (thus ensuring that this sequence meets the weaker requirement of being

spectrally white).

Of course, there are other cf's which meet the requirement ofvanishing at all

non-zero multiples of 1=�. For instance, nRPDF dithers with n � 1 all satisfy the

criterion since their cf's are of the form

P� (u) =

"
sin(� � u)

� � u

#n

:

However, in an SD system, such dithers usually have no inherent advantage over

simple white 1RPDF dither. (An exceptional instance is discussed in Section 5.3.)
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4.3.4 Summary of Subtractive Dither

The most practically important theoretical results concerning subtractively dithered

quantizing systems are that:

1. the total error can be rendered uniformly distributed andstatistically inde-

pendent of the system input by choosing a dither which satis�es the conditions

of Theorem 4.4, and

2. values of the total error separated in time can be renderedstatistically in-

dependent of one another (so that the total error signal is spectrally white)

by using a dither whose values, in addition to satisfying Theorem 4.4, are

statistically independent of one another.

A familiar dither which satis�es all the required conditions is an iid 1RPDF

process. Fig. 4.3 shows the results of a computer-simulatedquantization operation

performed upon a 1 kHz sine wave of 4.0 LSB peak-to-peak amplitude and using

this type of subtractive dither. Shown are the system input and output, the total

error, and the power spectrum of the system output. Note thatthe system output

resembles a sine wave plus an independent additive noise without vestiges of the

quantization staircase characteristic, and that no trace of the input signal is visible

in the noise-like total error waveform. Furthermore, the power spectrum of the

system output exhibits no distortion components whatsoever and shows that the

total error is spectrally white. (The 0 dB noise 
oor in Fig. 4.3 represents a power

spectral density of � 2T=6, with an integrated noise power of �2=12 up to the

Nyquist frequency.) These results should be compared with those in Fig. 4.1, which

illustrate the signal-dependent distortions produced by an undithered quantizing

system with the same system input signal.
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Figure 4.3: Results from the computer-simulated quantization of a 1 kHz sine
wave of 4.0 LSB peak-to-peak amplitude using 1RPDF subtractive dither.
Shown are (a) the system input signal, (b) the system output signal, (c) the
resulting total error signal, and (d) the power spectrum of the system output
signal (as estimated from sixty 50%-overlapping Hann-windowed 512-point
time records with an assumed sampling frequency of 44.1 kHz;0 dB represents
a power spectral density of� 2T=6 where T is the sampling period).
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Subtractively dithered quantizing systems are ideal in thesense that they render

the total error an input-independent additive noise process. The requirement of

dither subtraction at the system output, however, imposes restrictions which make

it di�cult to implement in practical applications. For one t hing, the dither signal

must be available at the output, and so either the dither mustbe transmitted along

with the signal or synchronized dither generators must be present at both ends

of the channel. Even more seriously, any signal editing or modi�cation occurring

between the original quantization and the subtraction of the dither necessitates a

like operation on the dither sequence. It is for such reasonsthat subtractive dither

is generally not a feasible option.

A proposed subtractive dithering scheme which may lead to practical implemen-

tations is due to Craven and Gerzon [40]. This scheme uses dither values determined

from the input signal values by means of a suitably randomized look-up table. At

this time, the proposed procedure awaits further testing and standardization. Even

if these proceed in the future, non-subtractive dithering schemes are likely to remain

preferable in many applications due to their relative simplicity.

Although many of the same bene�ts can be achieved with non-subtractive dither

as with subtractive dither, the total error variance is inevitably greater in NSD

systems, and the beautiful result regarding full statistical independence of the total

error is unattainable, as we shall now see.
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4.4 Non-Subtractive Dither

Although some individuals in the engineering community areaware of the correct

results regarding non-subtractive dither, a number of misconceptions concerning

the technique are widespread. Particularly serious is a persistent confusion of sub-

tractive and non-subtractive dithering, which have quite di�erent properties (see,

for instance, [36, p. 170]). We will see that non-subtractively dithered systems

cannot render the total error statistically independent of the input. Neither can

they make temporally separated values of the total error statistically independent

of one another. Theycan, however, render certain statistical moments of the total

error independent of the system input, and regulate the joint moments of total error

values which are separated in time. For many applications, this is as good as full

statistical independence.

4.4.1 NSD Systems: Statistics of the Total Error

The quantizer output in a non-subtractively dithered quantizing system is given by

(see Fig. 1.3(c))

y = Q(x + � );

so that the total error is

" = y � x

= Q(x + � ) � x

= q(x + � ) + �:

Obviously, the total error is not simply the quantization error alone, but also in-

volves the dither. This fact is responsible for the characteristics of NSD systems
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which distinguish them from SD ones. Chief among these is thefollowing [23]:

Theorem 4.6 In an NSD quantizing system it is not possible to render the total

error either statistically independent of the system inputor uniformly distributed

for system inputs of arbitrary distribution.

Proof : From Eq. (3.8) we obtain:

P";x (u" ; ux) =
1X

k= �1

sinc

 

u" �
k
�

!

P�

 

u" �
k
�

!

Px

 

ux �
k
�

!

:

(4.23)

Now suppose that for arbitrarily distributed inputs we can write this as P" (u" )Px (ux).

Then for u" = `=�, ` 2 Z0 we have

P"

 
`
�

!

Px(ux ) = Px

 

ux �
`
�

!

:

Then �
�
�
�
�
P"

 
`
�

! �
�
�
�
�

= 1

since otherwisejPx(ux )j > 1 for someux . Taking ux = 0 we obtain
�
�
�
�
�
Px

 
`
�

! �
�
�
�
�
= jPx(0)j = 1

so that the input must have a lattice density, contradictingthe assumption that it

is arbitrarily distributed. We conclude that " and x can never be made statistically

independent in an NSD system.

Furthermore, setting ux = 0 we have

P" (u" ) =
1X

k= �1

sinc

 

u" �
k
�

!

P�

 

u" �
k
�

!

Px

 

�
k
�

!

: (4.24)
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In order for " to be uniformly distributed, this must reduce to sinc (u" ) for some

choice ofP� ; that is, we require

sinc (u" ) =
1X

k= �1

sinc

 

u" �
k
�

!

P�

 

u" �
k
�

!

Px

 

�
k
�

!

:

Now supposeu" = `=� where ` 2 Z0. Then we have

sinc

 
`
�

!

= 0 = Px

 

�
`
�

!

so that Px cannot be arbitrary. Thus the total error cannot in general be made

uniformly distributed in an NSD system.

2

The counterintuitive nature of this result is the source of much confusion re-

garding NSD systems. For instance, it is tempting to accept the following line of

reasoning: suppose that a dither satisfying Theorem 4.4 is used so thatq is inde-

pendent ofx. Then, since� is also independent ofx, the total error " is the sum

of two random processes both of which are independent ofx and thus should be

independent ofx as well. This conclusion is 
atly false. The analytical approach

of Chapter 2 can easily be used to show that for arbitrary random variablesq, � ,

and x and a third " = q+ � (none of these necessarily representing quantities in a

quantizing system) that

P";x (u" ; ux) = Pq;�;x (u" ; u" ; ux):

Obviously, " and x are statistically independent of each other if and only ifx is

independent of the random vector (q; � ), since only in this instance doesP";x (u" ; ux)

split into a product of two functions one of which involvesu" alone and the otherux
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alone. This is a stronger requirement than the one thatx be independent ofq and

� individually. In an NSD quantizing system, givenq and � , the possible values of

x are restricted tox = � (q+ � ) + k� ; k 2 Z; so that the distribution of x is highly

dependent on (q; � ). Of course,x would be independent of (q; � ) if f q; �; x g formed

a set of independent random variables, that is, if it were thecase that

Pq;�;x (uq; u� ; ux) = Pq(uq)P� (u� )Px(ux );

but this even stronger condition iscertainly not met in an NSD quantizing system.

We observe that the correct general expression forp" (" ) in an NSD system may

be obtained from Eq. (4.24) by writing it as

P" (u" ) = [sinc (u" )P� (u" )] ? [Px (� u" )W 1
�

(u" )];

the inverse Fourier transform of which is:

p" (" ) = [�� � ? p� ](" ) � [px ? W� ](� " ): (4.25)

Although the total error in an NSD system cannot be made statistically inde-

pendent of the system input, it turns out that moments of the total error can be

rendered independent of the input distribution. From Eq. (4.24) we have

E["m ]
4
=

� j
2�

� m

P (m)
" (0)

=
� j

2�

� m 1X

k= �1

G(m)
�

 
k
�

!

Px

 
k
�

!

; (4.26)

where

G� (u)
4
=

sin(� � u)
� � u

P� (u): (4.27)

Since the cf,Px , of the system input is arbitrary we obtain the following result [23]:
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Theorem 4.7 In an NSD quantizing system,E["m ] is independent of the distribu-

tion of the system input,x, if and only if

G(m)
�

 
k
�

!

= 0 8k 2 Z0: (4.28)

If the conditions of Theorem 4.7 are satis�ed, then from Eq. (4.26),

E["m ] =
� j

2�

� m

G(m)
� (0);

which is precisely them-th moment of a notional random process with cfG� and

pdf �� � ? p� , although this is not, of course, the pdf of" . We can derive the

following expressions for the moments of the total error in terms of the moments

of the dither signal by direct di�erentiation of G� (u):

E[" ] = E[� ] (4.29)

E["2] = E[� 2] +
� 2

12
(4.30)

E["m ] =
bm

2 cX

`=0

 
m
2`

! � �
2

� 2` E[� m� 2` ]
2` + 1

: (4.31)

These exhibit the form of Sheppard's corrections (cf. Eq. (4.12)), but give ex-

pressions for the total error moments instead of the system input moments. We

emphasize that each of these equations forE["m ] is valid only when Theorem 4.7

is satis�ed for that particular value of m, and that the validity of one of these

equations does not imply the validity of any others corresponding to di�erent m

values.

Eq. (4.30) shows that with non-subtractive dither satisfying the conditions of

Theorem 4.7, the total error variance is greater than that ofclassical UD or SD

quantization by the dither variance.
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We will prove a somewhat weaker theorem, which perhaps is really just a corol-

lary to Theorem 4.7, but which is actually somewhat better known than that the-

orem itself [10, 14].

Theorem 4.8 In an NSD quantizing system,E["m ] is independent of the distribu-

tion of the system input,x, for m = 1; 2; : : : ; M if and only if

P (i )
�

 
k
�

!

= 0

8k 2 Z0 and i = 0; 1; 2; : : : ; M � 1:

Proof : The \if" direction follows immediately from repeated di�erentiation of

Eq. (4.27), yielding

E["m ] =
� j

2�

� m 1X

k= �1

mX

r =0

 
m
r

!

sinc(r )

 

�
k
�

!

P (m� r )
�

 

�
k
�

!

Px

 

�
k
�

!

:

The \only if" direction employs an inductive argument. Consider �rst M = 1. By

Theorem 4.7 we require

G(1)

 
k
�

!

= 0 8k 2 Z0:

Direct computation yields

G(1)
�

 
k
�

!

= sinc(1)

 
k
�

!

P�

 
k
�

!

+ sinc

 
k
�

!

P (1)
�

 
k
�

!

= sinc(1)

 
k
�

!

P�

 
k
�

!

for k 2 Z0:

The derivative of the sinc function is (see Appendix C)

sinc(1)

 
k
�

!

= �
(� 1)k

k
6= 0 8k 2 Z0



CHAPTER 4. PRACTICAL QUANTIZING SYSTEMS 70

so that the expression only vanishes8k 2 Z0 if

P�

 
k
�

!

= 0 8k 2 Z0:

Now consider

G(m+1)
�

 
k
�

!

=
m+1X

r =0

 
m + 1

r

!

sinc(r )

 
k
�

!

P (m� r +1)
�

 
k
�

!

and suppose that the the theorem holds forM = m, in which case this expression

reduces to

G(m+1)
�

 
k
�

!

= ( m + 1)sinc(1)

 
k
�

!

P (m)
�

 
k
�

!

:

Again the derivative of the sinc function does not vanish, sowe must have

P (m)
�

 
k
�

!

= 0 8k 2 Z0:

This proves the theorem.

2

We see that the dithers meeting the conditions of this theorem are those which were

introduced as dithers of orderM in Section 2.3.

Proceeding in the now accustomed fashion, we consider two total error values,

"1 and "2, which are separated in time by� 6= 0, and the two corresponding input

signal values,x1 andx2. We omit the demonstration that ("1; "2) cannot be rendered

statistically independent of (x1; x2), since this proceeds in a fashion analogous to

that of the one-dimensional case discussed above, and instead directly use Eq. (3.8)

with N = 2 to obtain

P" 1 ;" 2(u1; u2) =
1X

k1= �1

1X

k2= �1

sin[� �( u1 � k1=�)]
� �( u1 � k1=�)

sin[� �( u2 � k2=�)]
� �( u2 � k2=�)

� P� 1 ;� 2

 

u1 �
k1

�
; u2 �

k2

�

!

Px1 ;x2

 

�
k1

�
; �

k2

�

!

: (4.32)
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We proceed to investigate the joint moments of"1 and "2 in the hope that we can

exercise some control over them by an appropriate choice of the dither statistics.

From Eq. (4.32) we �nd that

E["m1
1 "m2

2 ] =
� j

2�

� m1+ m2 1X

k1= �1

1X

k2= �1

Px1 ;x2

 

�
k1

�
; �

k2

�

!

G(m1 ;m2 )
� 1 ;� 2

 
k1

�
;
k2

�

!

;

(4.33)

where

G� 1 ;� 2 (u1; u2)
4
=

sin(� � u1)
� � u1

sin(� � u2)
� � u2

P� 1 ;� 2 (u1; u2):

SincePx1 ;x2 is arbitrary, we �nd that E["m1
1 "m2

2 ] is independent of the joint pdf of

the system input if and only if

G(m1 ;m2 )
� 1 ;� 2

 
k1

�
;
k2

�

!

= 0 8(k1; k2) 2 Z2
0; (4.34)

in which case it is given by

E["m1
1 "m2

2 ] =
� j

2�

� m1+ m2

G(m1 ;m2)
� 1 ;� 2

(0; 0):

In this case, we can write an expression analogous to Eq. (4.31), relating the joint

moments of the total error to those of the dither:

E["m1
1 "m2

2 ] =
bm 1

2 cX

`1=0

bm 2
2 cX

`2=0

 
m1

2`1

! 
m2

2`2

! � �
2

� 2(`1+ `2 ) E[� m1 � 2`1
1 � m2 � 2`2

2 ]
(2`1 + 1)(2 `2 + 1)

:

(4.35)

Note that if � 1 and � 2 are statistically independent of each other and satisfy

Eq. (4.28) for m = m1 and m = m2, respectively, then Eq. (4.34) is automatically

satis�ed. In this case Eq. (4.35) factors such that"m1
1 and "m2

2 are uncorrelated

(i.e., E ["m1
1 "m2

2 ] = E["m1
1 ]E ["m2

2 ]).
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Let us now consider the special case wherem1 = m2 = 1. Explicitly performing

the di�erentiation in Eq. (4.33) we obtain

E["1"2]
4
=

� j
2�

� 2

P (1;1)
" 1 ;" 2

(0; 0)

=
� j

2�

� 2 1X

k1= �1

1X

k2= �1

8
><

>:
sinc(1)

 

�
k1

�

!

sinc(1)

 

�
k2

�

!

� P� 1 ;� 2

 

�
k1

�
; �

k2

�

!

Px1 ;x2

 

�
k1

�
; �

k2

�

!

+sinc

 

�
k1

�

!

sinc(1)

 

�
k2

�

!

P (1;0)
� 1 ;� 2

 

�
k1

�
; �

k2

�

!

Px1 ;x2

 

�
k1

�
; �

k2

�

!

+sinc(1)

 

�
k1

�

!

sinc

 

�
k2

�

!

P (0;1)
� 1 ;� 2

 

�
k1

�
; �

k2

�

!

Px1 ;x2

 

�
k1

�
; �

k2

�

!

+sinc

 

�
k1

�

!

sinc

 

�
k2

�

!

P (1;1)
� 1 ;� 2

 

�
k1

�
; �

k2

�

!

Px1 ;x2

 

�
k1

�
; �

k2

�

!
9
>=

>;
:

Careful inspection of this expression, keeping in mind thatthe �rst derivatives of

the sinc function vanish at the origin, shows that it reducesto

E[� 1� 2] =
� j

2�

� 2

P (1;1)
� 1 ;� 2

(0; 0);

thereby becoming independent of the system input, only under the conditions of

the following theorem:

Theorem 4.9 In an NSD system where all dither values are statistically indepen-

dent of all system input values,

E["1"2] = E[� 1� 2]

for arbitrary input distributions if and only if the following three conditions are
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satis�ed:

P� 1 ;� 2

 
k1

�
;
k2

�

!

= 0 8(k1; k2) 2 Z2
0; (4.36)

P (0;1)
� 1 ;� 2

 
k1

�
; 0

!

= 0 8k1 2 Z0; (4.37)

P (1;0)
� 1 ;� 2

 

0;
k2

�

!

= 0 8k2 2 Z0: (4.38)

We may better understand the requirements of this theorem bywriting

E["1"2] = E[(q1 + � 1)(q2 + � 2)]

= E[q1q2] + E[q1� 2] + E[q2� 1] + E[� 1� 2]:

We know from Theorem 4.5 thatE[q1q2] = 0 in general if Eq. (4.36) holds. Further-

more, it is not di�cult to show using Theorem 3.3 when Eqs. (4.37) and (4.38) hold

then E[q1� 2] = 0 and E[q2� 1] = 0, respectively. Thus when all three equations hold

we obtain E["1"2] = E[� 1� 2]: (Necessity follows from the arbitrariness ofPx1 ;x2 .)

We observe that if an iid dither is chosen so thatP� 1 ;� 2 (u1; u2) = P� (u1)P� (u2),

and if the dither is of order at least one, then the conditionsof the theorem will

be satis�ed. This is not su�cient to ensure that the error is wide-sense stationary,

however, since a dither of at least second order is required to render the error

variance independent of the input.

If the conditions of Theorem 4.9 hold for all� 1 and � 2 separated in time by

� 6= 0, then assuming that a dither of at least second order is used so that the

variance of" is given by Eq. (4.30), we have

r " (k) =

8
>><

>>:

E[� 2] +
� 2

12
; k = 0;

E[� 1� 2](k); otherwise.
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Discrete-time Fourier transforming this expression yields

PSD" (f ) = PSD � (f ) +
� 2T

6
; (4.39)

where PSD" represents the power spectral density of the total error andPSD�

represents that of the dither. Eq. (4.39) indicates that thetotal error spectrum is

the sum of the dither spectrum and a white noise component of total power � 2=12.

This white component is sometimes referred to as the \quantization noise."

The conditions of the theorem will certainly hold if an iid dither of second or

higher order is chosen, in which case the total error spectrum will be white.

4.4.2 NSD Systems: Statistics of the System Output

We now turn our attention to the system output of an NSD system. Eq. (3.8) gives

the cf of this process as

Py(u) =
1X

k= �1

G�

 

u �
k
�

!

Px

 

u �
k
�

!

(4.40)

and hence

E[ym ] =
1X

k= �1

mX

r =0

 
m
r

! " � j
2�

� r

G(r )
�

 
k
�

!# " � j
2�

� m� r

P (m� r )
x

 
k
�

!#

:

(4.41)

We also observe, for completeness, that the inverse Fouriertransform of Eq. (4.40)

is

py(y) = [�� � ? p� ? px ] (y)W� (y):

Now, if the �rst m derivatives ofG� (u) vanish at all non-zero multiples of 1=�,

then Eq. (4.41) reduces to

E[ym ] =
mX

r =0

 
m
r

!

E[" r ]E [xm� r ]; (4.42)
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where the expectation values of the total error are given in terms of the expectation

values of the dither by Eq. (4.31). IfPx is arbitrary, then the converse must also

hold. By direct di�erentiation of G� (u), the above condition is easily shown to be

equivalent to the condition of Theorem 4.8 withM = m. Expanding Eq. (4.42) for

the particularly interesting cases ofm = 1; 2 under the assumption thatE[� ] = 0

we obtain

E[y] = E[x]; (4.43)

E[y2] = E[x2] + E[� 2] +
� 2

12
: (4.44)

Proceeding in the usual fashion, we �nd that the joint moments of output values

y1 and y2, separated in time by� 6= 0, are given by

E[ym1
1 ym2

2 ] =
1X

k1= �1

1X

k2= �1

m1X

r 1=0

m2X

r 2=0

 
m1

r1

! 
m2

r2

! " � j
2�

� r 1+ r 2

G(r 1 ;r 2)
� 1 ;� 2

 
k1

�
;
k2

�

!#

�

" � j
2�

� (m1 � r 1)+( m2 � r 2)

P (m1 � r 1 ;m2 � r 2 )
x1 ;x2

 
k1

�
;
k2

�

!#

: (4.45)

If the indicated partial derivatives of G� 1 ;� 2 are zero at all non-zero multiples of

1=� for r i = 1; 2; : : : ; mi where i 2 f 1; 2g (this corresponding to a second-order

analogue of the condition of Theorem 4.8), then Eq. (4.45) reduces to

E[ym1
1 ym2

2 ] =
m1X

r 1=0

m2X

r 2=0

 
m1

r1

! 
m2

r2

!

E[" r 1
1 " r 2

2 ]E [xm1 � r 1
1 xm2 � r 2

2 ];

where the joint moments of the total error are given in terms of those of the dither by

Eq. (4.35). In particular, note that if these conditions aresatis�ed for m1 = m2 = 1,

then

E[y1y2] = E[x1x2] + E["1"2]:
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Then substituting the moment formulae Eqs. (4.31), (4.35) and (4.42) and assuming

the system input is wide-sense stationary, we have

E[y1y2](k) =

8
>>><

>>>:

E[x2] + 2E[x]E[� ] + E[� 2] +
� 2

12
; k = 0;

E[x1x2](k) + E[� 1� 2](k); otherwise. (4.46)

Hence, under these conditions, if the dither signal has zeromean then

PSDy(f ) = PSD x (f ) + PSD � (f ) +
� 2T

6
(4.47)

so that the spectrum of the output is the sum of the input and dither spectra, apart

from a white noise component of variance �2=12 contributed by the k = 0 term in

Eq. (4.46).

4.4.3 NSD Systems: Properties of Practical Dither Signals

Recall that an nRPDF random process is one generated by the summation ofn

statistically independent zero-mean uniformly distributed random processes, each

of 1 LSB peak-to-peak amplitude. We will prove the following:

Theorem 4.10 In an NSD quantizing system, annRPDF dither renders the �rst

n moments of the total error process,E["m ], m = 0; 1; : : : ; n; independent of the

distribution of the system input, and results, for a zero-mean dither with n � 2, in

a total error variance of (n + 1)� 2=12. Higher moments of the error signal will,

however, remain input dependent.
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Proof : The addition of n statistically independent RPDF random processes con-

volves their pdf's, hence multiplying their cf's and yielding

G� (u) =

"
sin(� � u)

� � u

#n+1

;

the �rst n derivatives of which will consist entirely of terms containing non-zero

powers of sin(� � u)=(� � u). Since this function goes to zero at the places required

by Theorem 4.8, the �rst n moments of the error will be independent of the input

distribution. If the dither has a mean value of zero, then itsvariance is the sum

of the variances of then independent uniformly distributed random processes of

which it is the sum, so that, according to Eq. (4.30), the variance of the total error

is (n + 1)� 2=12 whenevern � 2. Lemma C.2 from Appendix C shows that higher

derivatives ofG� will not vanish at the required locations, so that, by Theorem 4.7,

higher error moments will not be rendered input independentwhen such dither is

in use.

2

Furthermore, it is important to note that using rectangular-pdf dithers of peak-

to-peak amplitude not equal to one LSB (or, rather, not equalto an integral number

of LSB's) will not render error moments independent of the input since the zeros

of the associated sinc functions will not fall at integral multiples of 1=� (see illus-

trations of input-dependent error moments in [16]).

We proceed to examine two important examples of non-subtractive dither pdf's.

First, consider a system using dither with a simple RPDF (of 1LSB peak-to-peak

amplitude):

p� (� ) = � � (� );
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for which

G� (u) =

"
sin(� � u)

� � u

#2

:

The �rst three derivatives of this function are plotted in Fig. 4.4. The �rst derivative

satis�es the condition of going to zero at the regularly spaced intervals stipulated by

Eq. (4.28), while the second derivative and higher derivatives do not. This indicates

that the �rst moment of the error signal is independent of theinput, but that its

variance and higher moments remain dependent.

These conclusions are borne out by the accompanying plots ofconditional mo-

ments, representing the error moments as functions of a given input:

E["m jx] =
Z 1

�1
"mp" jx("; x )d":

The required cpdf may be found by substitutingpx (x) = � (x � x0) into Eq. (4.25),

yielding

p" (" ) = p" jx("; x 0) = [�� � ? p� ](" )W� (" + x0): (4.48)

The �rst conditional moment, or mean error, in Fig. 4.4 is zero for all inputs,

indicating that the quantizer has beenlinearized by the use of this dither thus

eliminating distortion. The error variance, on the other hand, is clearly signal-

dependent, so that the noise power in the signal varies with the system input. This

is sometimes referred to asnoise modulation,and is undesirable in many applica-

tions, such as in audio where audible time-dependent error signals are considered

intolerable.

Now consider a 2RPDF (TPDF) dither resulting from the sum of two indepen-

dent 1RPDF processes:

p� (� ) = [� � ? � � ](� ): (4.49)
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Figure 4.4: Derivatives of G� (u) (left) and conditional moments of the error
(right) for a quantizer using 1RPDF dither: (a) G(1)

� (u) and E[" jx] (both in
units of � ), (b) G(2)

� (u) and E["2jx] (both in units of � 2), (c) G(3)
� (u) and

E["3jx] (both in units of � 3). The frequency variable, u, is plotted in units
of 1=� and the input, x, in units of � .
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In a system employing this kind of dither,G� (u) is given by

G� (u) =

"
sin(� � u)

� � u

#3

:

The �rst three derivatives of this function, and the corresponding moments as a

function of the input, are plotted in Fig. 4.5. The �rst and second derivatives of

this function go to zero at the required places, so this dither renders both the �rst

and second moments of the total error independent ofx. The second moment of

the total error is a constant � 2=4 for all inputs, in agreement with Eq. (4.30). In

this case the use of an appropriate dither has eliminated both distortion and noise

modulation. Higher derivatives ofG� (u) do not meet the required conditions, so

that higher moments of the error remain dependent on the input.

Using an argument derived from Wright [10, 11], we will now show that such

2RPDF dither is unique and optimal in the sense that it is the only zero-mean dither

which renders the �rst and second moments of the total error input independent,

while minimizing the second moment. That is, when used in an NSD quantizing

system, this dither incurs the least possible increase in the total error variance of

any dither which eliminates input-dependent distortion and noise modulation.

For 2RPDF dither with zero mean we know that

P�

 
k
�

!

= 0 8k 2 Z0

P (1)
�

 
k
�

!

= 0 8k 2 Z:

Also, P� (u) must be equal to unity at u = 0 if it is to be a valid characteristic

function. We conclude that the dither cf and its �rst derivative are completely

speci�ed at all integer multiples of 1=�. According to the Generalized Sampling

Theorem [30], this is su�cient to uniquely specify P� (u) for all u if P� (� ) is �-

bandlimited (i.e., if p� is supported such thatp� (� ) = 0 for j� j > �). Since
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Figure 4.5: Derivatives of G� (u) (left) and conditional moments of the error
(right) for a quantizer using 2RPDF dither: (a) G(1)

� (u) and E[" jx] (both in
units of � ), (b) G(2)

� (u) and E["2jx] (both in units of � 2), (c) G(3)
� (u) and

E["3jx] (both in units of � 3). The frequency variable, u, is plotted in units
of 1=� and the input, x, in units of � .
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the triangular dither pdf of Eq. (4.49) is thus supported, and its corresponding cf

satis�es all the given conditions, it must be the unique pdf in question.

It remains to be shown that any dither pdf which is non-zero outside of the

interval [� � ; �] will produce a greater error variance. Since this variance is assumed

to be constant with respect to the input, it is su�cient to show that this holds for a

single input value. We will do so for an input value of �=2; i.e., forpx (x) = � (x� �
2 ).

For x = � =2, the cpdf of the total error, p" jx("; x ), is shown in Fig. 4.6(a). It

consists of two equally weighted delta functions at" = � � =2 when 2RPDF dither

is employed. Use of a wider dither pdf will result in the appearance of more delta

functions in the error's cpdf, as shown in Fig. 4.6(b), wherewe denote the weighting

of the delta function at " = � (2i � 1)� =2, i > 0, by e� i , so that

p" jx

�

";
�
2

�

=
1X

i =1

�

ei �
�

" � (2i � 1)
�
2

�

+ e� i �
�

" + (2 i � 1)
�
2

��

:

(4.50)

We proceed by expressing the fundamental condition that theintegral of this pdf

must equal unity:

(e1 + e� 1) +
1X

i =2

(ei + e� i ) = 1 : (4.51)

Now, by direct integration of Eq. (4.50), we compute the conditional expectation

E["2jx =
�
2

] =
1X

i =1

�

(2i � 1)
�
2

� 2

(ei + e� i )

=
� 2

4

"

(e1 + e� 1) +
1X

i =2

(2i � 1)2(ei + e� i )

#

:

Substituting Eq. (4.51) yields

E["2jx =
�
2

] =
� 2

4

"

1 + 4
1X

i =2

i (i � 1)(ei + e� i )

#

;
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which is always greater than �2=4 since thee� i 's must be non-negative and some

will be non-zero. We conclude the following:

Theorem 4.11 The choice of zero-mean non-subtractive dither pdf which renders

the �rst and second moments of the total error independent ofthe input, such that

the �rst moment is zero and the second is minimized, is uniqueand is 2RPDF.

Furthermore, it is easily shown from the Generalized Sampling Theorem that

the (n� =2)-bandlimited non-subtractive dither cf which renders the �rst n moments

of the total error independent of the input is unique, and must therefore be the cf

of an nRPDF dither.

The theorems of this chapter can also be applied to spectrally coloured dithers

(i.e., ones for which PSD� (f ) is not a constant), but we will delay detailed investi-

gation of such dithers until Chapter 5.

4.4.4 Summary of Non-Subtractive Dither

The results of greatest practical importance concerning NSD quantizing systems

are reiterated below:

1. Non-subtractive dithering, unlike subtractive dithering, cannot render the to-

tal error statistically independent of the system input. It can render any

desired moments of the total error independent of the input distribution pro-

vided that certain conditions on the cf of the dither are met (see Theorem 4.7).

In particular, a dither of order n as de�ned in Section 2.3, such asnRPDF

dither, will render the �rst n moments of the total error input independent.
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2. Non-subtractive dithering, unlike subtractive dithering, cannot render total

error values separated in time statistically independent of one another. It

can, however, regulate the joint moments of such errors. Forinstance, it

can render the power spectrum of the total error signal white(see discussion

following Eq. (4.39)).

3. Non-subtractive dithering can render any desired moments of the system input

recoverable from those of the system output, provided that the statistical

attributes of the dither are properly chosen (see Section 4.4.2). This includes

joint moments of system inputs separated in time, so that thespectrum of

the input can be recovered from the spectrum of the output.

4. Proper non-subtractive dithering always results in a total error variance greater

than � 2=12 (see Eq. (4.30)).

5. 2RPDF (TPDF) dither incurs the least increase in the totalerror variance of

any non-subtractive dither which eliminates input-dependent distortion and

noise modulation.

Fig. 4.7 shows the results of a computer-simulated quantization operation per-

formed upon a 1 kHz sine wave of 4.0 LSB peak-to-peak amplitude and using iid

dither with the aforementioned triangular pdf. Shown are the system input and

output, the total error, and the estimated power spectrum ofthe system output.

Note that vestiges of the input signal are clearly visible inthe total error wave-

form, indicating that the two signals arenot statistically independent. Also, the

time-waveform of the system output in Fig. 4.7(b) does not visually resemble a

sine wave plus an independent additive noise. Surprising asit may seem, listen-

ing experiments [21] show that the total error signal of Fig.4.7(c) sounds like a
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Figure 4.7: Results from the computer-simulated quantization of a 1 kHz
sine wave of 4.0 LSB peak-to-peak amplitude using 2RPDF non-subtractive
dither. Shown are (a) the system input signal, (b) the systemoutput signal,
(c) the resulting total error signal, and (d) the power spectrum of the system
output signal (as estimated from sixty 50%-overlapping Hann-windowed 512-
point time records with an assumed sampling frequency of 44.1 kHz; 0 dB
represents a power spectral density of� 2T=6 whereT is the sampling period).



CHAPTER 4. PRACTICAL QUANTIZING SYSTEMS 87

constant white noise, independent of the nature of the inputsignal (with which it

is indeed uncorrelated), and that the signal shown in Fig. 4.7(b) sounds identical

to a noisy sine wave. Indeed, the estimated power spectrum ofthe system output

in Fig. 4.7(d) exhibits no distortion components and indicates that the total er-

ror is spectrally white. These results should be compared with those in Figs. 4.1

and 4.3, which illustrate the results of quantizing a sine wave using undithered and

SD systems, respectively. In particular, it should be notedthat the noise 
oor in

Fig. 4.7(d) is up by 4.8 dB relative to that of Fig. 4.3(d) due to the tripling of the

noise spectral density in accordance with Eq. (4.47).

In audio applications, the PSD of the total error is perceptually meaningful and

should be input independent. In particular the error shouldhave zero mean, and

noise modulation(i.e., variation in the second error moment) should be eliminated,

so that a dither of at least second order should be used. In image processing, some

evidence exists [13] that the third moment of the total errormay be perceptually

relevant and should perhaps be controlled by using third order dither. In instuments

measuring parameters which depend on higher statistical moments, still higher

order dithers may be appropriate.

Some speci�c comment is required concerning the special nature ofrequantization.

In a purely digital system, random processes exhibiting thecontinuous pdf's de-

scribed in this section are not, strictly speaking, available since not all real numbers

are representable using a �nite number of binary digits. In fact, digital dither pdf's

of necessity resemble discretized or \sampled" versions ofthe continuous pdf's

(rectangular, triangular, etc.) described above. It is notimmediately obvious that

such dithers will retain the desirable properties of their analogue counterparts with

respect to rendering total error moments independent of thesystem input. It is
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rigorously proven in Chapter 6 that such dithersdo indeedretain these properties,

and empirical evidence corroborating this conclusion may be found in [16].

The question has been posed [41, 42] as to the extent to which real-time esti-

mation of attributes of dithered quantizing systems proceeds in the same fashion

as for signals with additive iid random noise processes. Readers interested in the

similarity of the two cases are referred to the treatment of this question provided

in Appendix B.

4.5 Summary of Statistical Relationships Between

Signals

Fig. 4.8 indicates the statistical dependences between thesignals indicated in Fig. 2.1

with and without the application of a �rst or higher order dit her and under the

assumption that that � and x are statistically independent processes. Signals not

rendered independent of one another by a �rst order dither are not so rendered

by the use of higher order dithers. All entries in the charts were arrived at by

inspecting the relevant joint cf's to determine whether a particular choice of dither

cf would allow them to be written as a product3. For instance, let us consider NSD

systems and take, by way of example, the pair of signalsq and ". Can these random

variables ever be statistically independent in an NSD system?

3We point out that w0 and y are identical in NSD systems (see Fig. 2.1), as areq and " in SD

systems, so that the corresponding entries in the charts areidentical.



CHAPTER 4. PRACTICAL QUANTIZING SYSTEMS 89

q

q

y

y

w

x

xw

n

e n

e

NSD Systems

q

q

y

y

w

x

xw

n

e n

e

SD Systems

Statistically independent for n    1.

Never statistically independent.

w w

ww

Figure 4.8: Statistical dependences between signals in SD and NSD quantiz-
ing systems where the dither and input signals are assumed tobe statistically
independent. (n refers to the order of the applied dither.)
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Setting all unwanted variables to zero and simplifying Eq. (3.8), we see that

Pq;"(uq; u" ) =
1X

k= �1

sinc

 

uq + u" �
k
�

!

P�;x

 

u" �
k
�

; �
k
�

!

:

Now, since the sum ofuq and u" occurs in the argument of the non-linear sinc

function, it is clear that this expression can never be splitinto a product of a func-

tion involving uq alone with one involvingu" alone. Hence these random variables

can never be statistically independent. This is obviously true for any other pair of

random variables whose Fourier transform variables occur together in a function

argument in Eq. (3.8).

Now consider the pair of random variables" and x, and let us suppose that�

and x are statistically independent. The proof of Theorem 4.6 demonstrates that no

choice of dither statistics can render" and x statistically independent for arbitrarily

distributed inputs. A similar conclusion is reached for thesignal pairs (q; � ) and

(q; w), although it can be shown that each of these pairs of random processes can

be rendereduncorrelated by an appropriate choice of dither (see below).

We are left with only two signal pairs which might potentially be independent.

These are (q; x) and (�; x ). � is independent ofx since we have speci�ed that this

is the case. Then Theorem 4.4 indicates thatq and x are statistically independent

if and only if

P�

 
k
�

!

= 0 8k 2 Z0;

i.e., if a dither of order at least one is used. Combining all of the above consid-

erations and conducting a similar analysis for SD systems allows construction of

Fig. 4.8.

At the risk of belabouring the point, we observe thatq is statistically inde-

pendent of x in both SD and NSD systems if a �rst order dither is used. This is
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especially good news in SD systems because the quantizationerror, q, and the total

error of the system," , are identical. In NSD systems this is not true, however, and

the total error is never statistically independent of the input for arbitrary input

distributions. As we have seen, however, certainmomentsof the total error in an

NSD system can be rendered independent of the system input distribution.

Fig. 4.9 indicates the correlation between various signalswith di�erent orders

of dither assuming that � and x are statistically independent. The charts were

constructed by explicitly di�erentiating the relevant joi nt cf's and inspecting the

results for conditions on the dither cf's which would renderthe corresponding ran-

dom variables uncorrelated. As an example, consider" and � in an SD system. We

are interested in conditions under which

E["� ] = E[" ]E[� ]:

From Eq. (3.7) we have

P";� (u" ; u� ) =
1X

k= �1

sinc

 

u" �
k
�

!

P�

 

u� �
k
�

!

Px

 

�
k
�

!

so that

E["� ]
4
=

� j
2�

� 2

P (1;1)
";� (0; 0)

=
� j

2�

� 2 1X

k= �1

sinc(1)

 

�
k
�

!

P (1)
�

 

�
k
�

!

Px

 

�
k
�

!

: (4.52)

Furthermore,

P" (u" ) =
1X

k= �1

sinc

 

u" �
k
�

!

P�

 

�
k
�

!

Px

 

�
k
�

!

so that

E[" ]
4
=

� j
2�

�

P (1)
" (0)

=
� j

2�

� 1X

k= �1

sinc(1)

 

�
k
�

!

P�

 

�
k
�

!

Px

 

�
k
�

!

: (4.53)
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Now, if

P (i )
�

 
k
�

!

= 0; 8k 2 Z0; 8i 2 f 0; 1g; (4.54)

then Eqs. (4.52) and (4.53) both reduce to zero so that

E["� ] = E[" ]E[� ] = 0:

(The derivative of the sinc function vanishes at the origin,thereby taking care of the

k = 0 case.) Thus," and � are both uncorrelated and orthogonal. This analysis was

repeated for all pairs of signals that were of interest in both SD and NSD systems

in order to generate Fig. 4.9.

If the assumption is made thatE[� ] = 0 then this chart can be taken to indicate

orthogonality as well as uncorrelatedness, in which case itcan be used to deduce

the variances of signals of interest. For instance, note from Fig. 2.1 that in an NSD

system

E["2] = E[(� + q)2]

= E[� 2] + 2E[�q ] + E[q2]:

From Fig. 4.9 we see thatE[�q ] = 0 if a zero mean dither of second or higher order

is used. In this case, usingE[q2] = � 2=12 we obtain

E["2] = E[� 2] +
� 2

12
;

which is precisely Eq. (4.30). Furthermore, in such a systemwe can go on to write

E[y2] = E[(x + ")2]

= E[x2] + 2E[x" ] + E["2]

= E[x2] + E[� 2] +
� 2

12
;
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where we have noted from Fig. 4.9 thatE[x" ] = 0 for zero mean dithers of order

n � 1. Note that in order to substitute for E["2], however, we require that the

dither be of order n � 2. Indeed, E["2] is not independent of the system input

otherwise. It should be observed that the expression obtained in this manner is

identical to Eq. (4.44).

It turns out that this approach can be used to deduce the variance of any signal

in an SD or NSD system in terms of the variances ofx, � and q provided an

appropriate dither is in use.



Chapter 5

Coloured Errors and

Multi-Channel Systems

This chapter will consider four topics related to discrete-time dithered quantizing

systems: the use of spectrally coloured (i.e., non-white) dither signals, dither in

systems using noise-shaping error feedback, the raw error of an SD system, and the

e�cient generation of multi-channel dither signals.

5.1 Spectrally Shaped Dithers

We now proceed to apply the analysis of the last chapter to a large family of wide-

sense stationary but spectrally-shaped (i.e., non-white)dither signals of practical

interest [25]. We will consider the family of dithers whosen-th sample can be

95
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Figure 5.1: Schematic of a dither generator for producing spectrally shaped
dithers.

written as

� n =
1X

i = �1

ci � n� i (5.1)

where the� i 's are iid so that together they represent a strict-sense stationary ran-

dom process,� . It will be tacitly assumed that ci = 0 for i < 0, so that � corre-

sponds to the output of a causal non-recursivedither �lter , G, of the form

G(z) =
1X

i =0

ci z� i

with � as its input (see Fig. 5.1).� is also assumed to be statistically independent

of the system inputx, so that � is as well. We will hereafter refer to such a dither

as a�ltered dither.

The objective is to �nd conditions such that dithers in this particular family

will render the total error spectrum independent of the system input in a dithered
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quantizing system. That is, we require thatE["2] and E["1"2] are constant so that

the autocorrelation function of the total error is input independent. We proceed

by �nding the characteristic functions required in order touse the theorems given

in Chapter 4.

We begin by de�ning the vectors

�
4
=( : : : ; � � 1; � 0; � 1; : : : )

and

�
4
=( : : : ; � � 1; � 0; � 1; : : : ):

Now we write the joint pdf

p�;� (�; � )
4
= p� j � (�; � )p� (� )

=
1Y

j = �1

�

0

@� j �
1X

i = �1

ci � j � i

1

A p� (� j ):

Here we have used the facts that� j is completely determined by choosing the� i 's

and that the � i 's are iid so that their joint pdf splits into a product of identical

functions which we will simply denote byp� ; i.e.,

p� i � p� 8i:

To obtain the associated cf, we now Fourier transform all variables. The transform

variable corresponding to� j will be uj and that corresponding to� i will be wi ,

where, as above, we will form real vectorsu and w from these components for
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notational convenience.

P�;� (u; w) =
1Y

j = �1

Z 1

�1
exp

0

@� j 2�u j

1X

i = �1

ci � j � i

1

A p� (� j )e� j 2�� j wj d� j

=
1Y

j = �1

Z 1

�1

1Y

i = �1

e� j 2�u j ci � j � i p� (� j )e� j 2�� j wj d� j

=
1Y

i = �1

Z 1

�1

1Y

j = �1

e� j 2�c j � i u j � i p� (� i )e� j 2�� i wi d� i

=
1Y

i = �1

P�

0

@wi +
1X

j = �1

cj � i uj

1

A : (5.2)

Setting wi = 0 8i and uj = 0 8j 6= n we directly obtain the cf we require:

P� n (un) =
1Y

i = �1

P� (cn� i un):

Since� is strict-sense stationary, we will drop the unneeded time-index n and re-

index the c's:

P� (u) =
1Y

i = �1

P� (ci u): (5.3)

Also, by setting to zero all of thewi 's and all of the uj 's except for un and un+ `

(which we relabelu1 and u2), Eq. (5.2) yields

P� n ;� n + ` (u1; u2) =
1Y

i = �1

P� (cn� i u1 + cn+ `� i u2)

=
1Y

i = �1

P� (ci u1 + ci + `u2): (5.4)

Di�erentiation of Eqs. (5.3) and (5.4) and making the simplifying assumption that

E[� ] = 0 gives

r � (`) = E[� 2]
1X

j = �1

cj cj + `

and

PSD� (f ) = 2 TE[� 2]

8
<

:

1X

j = �1

c2
j + 2

1X

`=1

1X

j = �1

cj cj + ` cos(2�`T f )

9
=

;
: (5.5)



CHAPTER 5. COLOURED ERRORS AND MULTI-CHANNEL SYSTEMS 99

5.1.1 Filtered Dithers in NSD Systems

We return to Theorem 4.8 in order to see what demands it placesupon the cf's

derived above. We begin with the case of the error mean (m = 1), which entails

the requirement that

P�

 
k
�

!

= 0 8k 2 Z0 (5.6)

in order that this quantity be independent of the input and given by Eq. (4.29).

Clearly, this condition will be satis�ed by the dither of Eq. (5.3) if and only if for

eachk 2 Z0 there exists at least one value ofi such that:

P�

 

ci
k
�

!

= 0:

Requiring that the error variance be input independent introduces an additional

constraint:

P (1)
�

 
k
�

!

= 0 8k 2 Z0:

From Eq. (5.3) we have

P (1)
�

 
k
�

!

=
1X

j = �1

cj P (1)
�

 

cj
k
�

!
1Y

i = �1
i 6= j

P�

 

ci
k
�

!

: (5.7)

This expression will go to zero at the required locations if for eachk 2 Z0 either

1. there exists ani such that

P (1)
�

 

ci
k
�

!

= 0

and

P�

 

ci
k
�

!

= 0;
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or

2. there exist two distinct values ofi such that

P�

 

ci
k
�

!

= 0

so that, although terms occur in Eq. (5.7) in which either oneof these two

functions alone will be di�erentiated, in any given term onewill be undi�er-

entiated and will cause the respective term to vanish in the required places.

We now proceed to address the question of what conditions ensure that a spec-

trally shaped dither will render the total error spectrum input independent. As

usual, we approach the question by investigating correlations between errors sep-

arated in time; e.g.,E["n1"n2 ]. To apply Theorem 4.9 we useP� n ;� n + ` as given by

Eq. (5.4). We proceed by treating separately the three conditions required by the

theorem.

Condition I (Eq. (4.36)) is satis�ed for all lags` 2 Z0 if and only if 8(k1; k2) 2 Z2
0

and 8` 2 Z0 there exists ani such that

P�

 

ci
k1

�
+ ci + `

k2

�

!

= 0:

Note that if this equation holds, then Eq. (5.6) necessarilyholds as well.

Proceeding to Condition II (Eq. (4.37)) we have:

P (0;1)
� n ;� n + `

 
k1

�
; 0

!

=
1X

j = �1

cj + `P (1)
�

 

cj
k1

�

! 1Y

i = �1
i 6= j

P�

 

ci
k1

�

!

:

All terms in this sum will go to zero at the required locations8` 2 Z0 under the

same condition that we found for constancy of the error variance above; that is, we
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require 8k 2 Z0 that either P� (ci k=�) = 0 and P (1)
� (ci k=�) = 0 for some value of

i , or P� (ci k=�) = 0 for any two values of i .

Condition III (Eq. (4.38)) is symmetric with Condition II an d yields the same

conditions on the cf of� .

Collecting the above conditions yields the following set ofsu�cient conditions

for the error spectrum to be constant and input independent:

Theorem 5.1 In an NSD quantizing system using �ltered dither the total error will

be wide-sense stationary and independent of the system input under the following

conditions:

1. 8(k1; k2) 2 Z2
0 and for each` 2 Z0 there exists ani such that

P�

 

ci
k1

�
+ ci + `

k2

�

!

= 0; (5.8)

and

2. for eachk 2 Z0, either there exists a value ofi such that

P�

 

ci
k
�

!

= 0 (5.9)

and

P (1)
�

 

ci
k
�

!

= 0; (5.10)

or there exist two distinct values ofi such that

P�

 

ci
k
�

!

= 0: (5.11)
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Subject to the conditions of the theorem, we have

E["n"n+ ` ] =

8
><

>:

E["2
n ]; ` = 0;

E[� n � n+ ` ]; otherwise.

so that

PSD" (f ) = PSD � (f ) +
� 2T

6
: (5.12)

The conditions in the Theorem 5.1 are su�cient but not necessary, with more

complicated and general conditions probably existing. In spite of this, the condi-

tions of this theorem are so general as to be di�cult to use, but they are the form

required for certain � pdf's (see [43]). Here, let us interpret them in the common

case where� represents a strict-sense stationarymRPDF random process.

If the � 's are iid andmRPDF, then Condition 1 of Theorem 5.1 will be satis�ed

8(k1; k2) 2 Z2
0 if for each ` 2 Z0 there exists ani , call it i0, such that of ci 0 and

ci 0+ ` one is zero and the other is a non-zero integer. To see why thisis, note that

for an � of this sort Eq. (5.8) involves

P�

 

ci
k1

�
+ ci + `

k2

�

!

= sincm

 

ci 0

k1

�
+ ci 0+ `

k2

�

!

:

This equation must hold if both k1 6= 0 and k2 6= 0 since the argument of the sinc

function will then be a non-zero integer multiple of 1=� under the above condition.

What happens in the case whereci 0 = 0 and k2 = 0 ( k1 6= 0)? Then there exists

i1 = i0 + ` such that Eq. (5.8) holds and becomes

sincm

 

ci 1

k1

�

!

= 0:

A similar factor exists if ci 0+ ` = 0 and k1 = 0 ( k2 6= 0). Hence for each pair

(k1; k2) 2 Z2
0 there exists, under the stated condition, ani such that Eq. (5.8)

holds.
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What does Condition 2 of Theorem 5.1 entail when� is mRPDF with m � 1?

In such a case, we see that the existence of two distinctci 's with values which are

non-zero integers is su�cient to satisfy the requirement ofEq. (5.11). If, on the

other hand, � is mRPDF with m � 2 then it is su�cient that one non-zero integral

ci exist to satisfy the requirements of both Eq. (5.9) and Eq. (5.10). For instance,

the cf of a 2RPDF process,

P� (u) = sinc2 (u);

goes to zero atu = ci k=� ; 8k 2 Z0 if ci 2 Z0, and so does its �rst derivative.

We collect these conclusions into the following useful corollary to Theorem 5.1.

Corollary 5.1 In an NSD quantizing system using �ltered dither with� being an

iid mRPDF random process, the total error will be wide-sense stationary and in-

dependent of the system input with a PSD given by Eq. (5.12) under the following

conditions:

1. for each` 2 Z0 there exists ani such that ofci and ci + ` one is zero and the

other is a non-zero integer,

and

2. either � is mRPDF with m � 1 and there exist at least two distinct values of

i such that ci is a non-zero integer, or� is mRPDF with m � 2 and there

exists at least one value ofi such thatci is a non-zero integer.

Note that the above conditions are su�cient but not necessary. On the other hand,

Eq. (5.4) reveals that a necessary (butnot su�cient) condition is that there must

exist at least one value ofi such that ci is a non-zero integer.
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Consider a system with a stationary RPDF� signal. What sets of dither �lter

coe�cients satisfy the above conditions? Obviously, the requirements are met by

the dither �lter coe�cients

f 1; � 1g;

(where we have omitted the in�nite sequences of zeros preceding and following the

coe�cients shown). This coe�cient set is associated with a dither whose spectrum

has a simple highpass form, as given by Eq. (5.5):

PSD� (f ) =
� 2T

3
f 1 � cos(2�T f )g:

Also, the coe�cient sequences
�

1; � 1;
1
2

; �
1
2

�

;

� 1
2

; �
1
2

; 1; � 1
�

;
�

1; �
1
2

; 1; �
1
2

�

;
� 1

2
; � 1;

1
2

; � 1
�

;
�

1; �
1
2

;
1
2

; � 1
�

;
�

1; �
1
2

; 0;
1
2

; � 1
�

;

all satisfy the requirements. Fig. 5.2 is in agreement with this conclusion. It shows

the output error spectrum from a system using the fourth in this list of dithers

with a null system input, as well as that error spectrum normalized by the error

PSD as predicted by Eq. (5.12) for a properly dithered system1. The result of the

1All power spectra shown in this chapter represent the average of 12000 256-point FFT's

of 50%-overlapping Hann-windowed data generated by computer-simulated quantization. 0 dB

represents the PSD of a random process whose values are RPDF and iid; i.e., 0 dB represents

� 2T=6.
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(a) (b)

Figure 5.2: PSD" (f ) for a NSD quantizing system and using a dither �lter
with RPDF input, � , and coe�cients f 0.5,-1.0,0.5,-1.0g. The system was
presented with a static null input (0.0 LSB). (a) Observed PSD, (b) observed
PSD normalized by expected PSD.

normalization is 
at, indicating that the spectrum is of the expected shape. On the

other hand,
� 1

2
; � 1; 1; �

1
2

�

does not meet Part 1 of the condition for̀ = � 1. Fig. 5.3 shows the error spectrum

from a system using this sort of dither with a null system input, along with that

spectrum normalized by Eq. (5.12). The results of the normalization are not 
at,

indicating that the error spectrum is not of the sort predicted.

As a �nal note, we observe that in NSD systems we cannot generate arbitrary

total error spectra by varying the dither spectrum, since Eq. (5.12) indicates that

an additive white noise component will always be present. The are many appli-

cations where more complete control of the error spectrum isdesirable, and this

may be achieved using noise-shaping error feedback (see Section 5.2). Spectrally

shaped dithers remain of interest in certain applications,however (see Section 5.3).

Furthermore, they are useful in high speed applications where it is prohibitively
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Figure 5.3: PSD" (f ) for an NSD quantizing system using a dither �lter with
RPDF input, � , and coe�cients f 0.5,-1.0,1.0,-0.5g. The system was presented
with a static null input (0.0 LSB). (a) Observed PSD, (b) observed PSD
normalized by expected PSD.

time-consuming to generatenRPDF dither using n newly calculated random num-

bers per data sample. In such cases, a single new� may be generated per sample

and placed in a delay line to generate spectrally shaped dither of the sort described

by Eq. (5.1). A commonly used example is the simple highpass dither mentioned

above, which may be generated using dither �lter coe�cients

f 1; � 1g:

Such dither is 2RPDF, but only one new random number is calculated per sampling

period.

5.1.2 Filtered Dithers in SD Systems

Let us compare the above results for NSD systems with analogous ones for SD

systems. We require only that Eq. (4.18) be satis�ed. This isthe same requirement

as imposed by Eq. (4.36) and so leads directly to the following theorem:
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Theorem 5.2 In an SD quantizing system using �ltered dither, the total error will

be strict-sense stationary with its PSD given by

PSD" =
� 2T

6
(5.13)

if and only if for each pair (k1; k2) 2 Z2
0 and for each` 2 Z0 there exists ani such

that

P�

 

ci
k1

�
+ ci + `

k2

�

!

= 0:

The condition here is, of course, just the �rst condition of Theorem 5.1.

Again, conditions speci�cally for nRPDF � 's can be derived. Note that the

condition of the following corollary to Theorem 5.2 is precisely the �rst condition

of Corollary 5.1.

Corollary 5.2 In an SD quantizing system using �ltered dither with� being an iid

nRPDF random process, the total error will be wide-sense stationary and indepen-

dent of the system input with a PSD given by Eq. (5.13) if for each ` 2 Z0 there

exists ani such that ofci and ci + ` one is zero and the other is a non-zero integer.

Of course, there exist �lter coe�cient sequences,f ci g, which satisfy the condi-

tions of Corollary 5.2 without satisfying those of Corollary 5.1. That is to say that

just because �ltered dither is suitable for an SD system doesnot imply that it is

suitable for an NSD system. One example is

� 1
2

; 1
�

which is certainly not a suitable dither for an NSD system. Fig. 5.4, however,
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Figure 5.4: PSD" (f ) for an SD quantizing system using a dither �lter with
RPDF input, � , and coe�cients f 0:5; 1g. The system had a nominal sampling
rate of 44.1 kHz and was presented with a static null input.
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Figure 5.5: PSD" (f ) for an SD quantizing system using a dither �lter with
RPDF input, � , and coe�cients f 0:5; 1; 0:5g. The system had a nominal
sampling rate of 44.1 kHz and was presented with a static nullinput.
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shows PSD" (f ) as calculated from a computer simulation of an SD system using

this dither. It is 
at as expected. On the other hand, Fig. 5.5shows the error

spectrum from a simulated SD system using a dither with �ltercoe�cient sequence
� 1

2
; 1;

1
2

�

:

This sequence does not satisfy the conditions of Corollary 5.2 and the corresponding

error spectrum is not 
at.

In light of the fact that the total error " = q of an SD system is spectrally 
at

irrespective of the spectral shape of the dither, the readermay wonder why one

would ever bother using a spectrally shaped dither, or indeed any dither other than

simple iid (white) RPDF, in such a system. We will see in Section 5.3 that this

may be desirable if the output of an SD system with noise-shaping error feedback

will sometimes be played back without subtraction of the dither, in which case the

resulting error signalwill be spectrally shaped if a non-white dither is used.

5.2 Dithered Noise-Shaping Quantizing Systems

The use of noise-shaping error feedback in quantizing systems is a powerful tech-

nique which allows the total error alone to be spectrally shaped in a fashion de-

termined by the system designer without a�ecting the signal. For instance, in an

audio system it may be preferable to shape the quantization error such that most

of its power resides in high frequency bands where the human ear is relatively in-

sensitive. (A considerable decrease in the perceived noiselevel is possible even in

systems operating at commercial audio sampling rates [44, 45].)

Fig. 5.6 shows a schematic for a dithered quantizing system with noise-shaping
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Figure 5.6: Schematic of a generalized dithered quantizingsystem using noise-
shaping error feedback. Shown are theshaped total error, e, of the system
and also its raw error, � (discussed in Section 5.3).

error feedback. Note that only the total error" of the quantization operation is

fed back. The e�ect of the feedback �lterH (z) on the shaped total error, e, can be

assessed by expressing thez-transform of the system output,y(z), in two di�erent

ways [45]:

y(z) = x0(z) + e(z)

y(z) = x0(z) � H (z)" (z) + "(z):

Subtraction yields

e(z) = [1 � H (z)]" (z)

where e(z) and "(z) are the z-transforms of the signalse and ", respectively, and

where H (z) is the transfer function of the noise-shaping �lter. Hence, the power
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spectrum ofe is given by [31]

PSDe(f ) =
�
�
�1 � H (ej 2�fT )

�
�
�
2

PSD" (f ); (5.14)

whereH (ej 2�fT ) represents the frequency response of the noise-shaping �lter, H (z).

This �lter always includes one implicit delay element which prevents the current

error from being subtracted from the current input. We note that PSD" (f ) may

itself be shaped, its form being determined by whether the system is NSD (see

Eq. (4.39)) or SD (see Eq. (4.20)) and whether or not� is spectrally shaped.

The use of noise shaping complicates the analysis of the error statistics. The

reason for this is that x and � will not be statistically independent if a �ltered

dither generator of the sort shown in Fig. 5.1 is used. Consider for instance the

case where H(z) is a simple delay element

H (z) = z� 1:

Using subscripts to denote the temporal order of the quantities involved, we note

that the input sample xn contains vestiges of� n� 1 arriving via the feedback path,

and that in general this signal is also present in� n . The theorems given above

cannot be applied in this situation because they all assume independence ofx and

� . Under these circumstances, Eq. (5.14) holds but we cannot be certain of the form

or even the constancy of PSD" (f ). Fortunately, the theorems can be generalized to

handle the case at hand.
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5.2.1 NSD Noise Shaping Systems

We begin with NSD systems and the derivation of results analogous to Theorems 4.8

and 4.9. Eq. (3.8) yields

P" (u" ) =
1X

k= �1

sinc

 

u" �
k
�

!

P�;x

 

u" �
k
�

; �
k
�

!

:

Thus

E["m ]
4
=

� j
2�

� m

P (m)
" (0)

=
� j

2�

� m 1X

k= �1

mX

r =0

 
m
r

!

sinc(m)

 
k
�

!

P (m� r; 0)
�;x

 
k
�

;
k
�

!

:

In this case we have by analogy with Theorem 4.8:

Lemma 5.1 In an NSD quantizing system in which the dither,� , and system input

signal, x, are not necessarily statistically independent,E[" ` ] is independent of the

distribution of the input x for ` = 1; 2; : : : ; N if and only if the joint characteristic

function of the dither and the input,P�;x (u; v), obeys the condition that

P (i; 0)
�;x

 
k
�

;
k
�

!

= 0

8k 2 Z0 and i = 0; 1; 2; : : : ; N � 1:

(5.15)

Subject to the conditions of Lemma 5.1,E["m ] for 0 � m � N is given by Eq. (4.31),

as before.

The derivation of P�;x in terms of the � i 's proceeds precisely as for the case

wherex is not involved, and we simply state the result:

P�;�;x (u; w; v) = P�;x (
; v ); (5.16)
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where

x = ( : : : ; x� 1; x0; x1; : : : );

and where

v = ( : : : ; v� 1; v0; v1; : : : )

is the corresponding vector of Fourier transformed variables. 
 is a similar vector

with components


 i = wi +
1X

j = �1

cj � i uj :

By setting all the unwanted variables in Eq. (5.16) to zero weobtain:

P� n ;xn (un ; vn ) = P�;x n (�; v n); (5.17)

where the components of� are

� i = cn� i un

and where we will retain the time indices since the relative times of� i and xn must

be taken into account. (Note that if the � 's are all mutually independent and we

let vn = 0, then Eq. (5.17) reduces to Eq. (5.3).)

In order for the mean and variance of the error to be input independent,

Lemma 5.1 requires that:

P� n ;xn

 
k
�

;
k
�

!

= 0 8k 2 Z0 (5.18)

and

P (1;0)
� n ;xn

 
k
�

;
k
�

!

= 0 8k 2 Z0: (5.19)

At �rst glance, interpretation of these conditions in termsof Eq. (5.17) appears to

be frustrated by the fact that we know nothing about the quantity P�;x n . However,
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we can assume that (a) the dither �lter is causal so thatci = 0 8i < 0, and that (b)

� i is statistically independent of the random vector (: : : ; xn� 2; xn� 1; xn ) for i � n,

where we recall that the dither �lter, H (z), must contain an implicit single-sample

delay. Thus there exists exactly one value ofi such that ci 6= 0 and for which � i is

statistically independent ofxn . This is i = n, so that Eq. (5.17) can be written as

the product

P� n ;xn (c0un ; vn ) = P� n (c0un)P�;x n (� 0; vn):

where

� 0
i =

8
><

>:

� i ; i < n;

0; i � n:

We conclude that Eq. (5.18) holds if

P�

 

c0
k
�

!

= 0 8k 2 Z0; (5.20)

and similarly that Eq. (5.19) holds if

P (1)
�

 

c0
k
�

!

= 0 8k 2 Z0: (5.21)

The analysis of the 2-D statistics proceeds in the usual fashion. We state without

proof the obvious generalization of Theorem 4.9.

Lemma 5.2 Consider two values,"n and "n+ ` , of the total error produced by an

NSD quantizing system in which the dither and the input to thequantizing system

are not necessarily statistically independent. Let these error samples be separated

in time by � = `T whereT is the sampling period of the system and̀6= 0. Denote

by P(� n ;� n + ` );(xn ;xn + ` ) the joint cf of the dither and input values,� n , � n+ ` , xn , and
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xn+ ` , corresponding to"n and "n+ ` , respectively. If and only if

P(� n ;� n + ` );(xn ;xn + ` )

 
k1

�
;
k2

�
;
k1

�
;
k2

�

!

= 0 8(k1; k2) 2 Z2
0 (5.22)

P (0;1;0;0)
(� n ;� n + ` );(xn ;xn + ` )

 
k1

�
; 0;

k1

�
; 0

!

= 0 8k1 2 Z0 (5.23)

P (1;0;0;0)
(� n ;� n + ` );(xn ;xn + ` )

 

0;
k2

�
; 0;

k2

�

!

= 0 8k2 2 Z0 (5.24)

then

E["n"n+ ` ] = E[� n � n+ ` ]:

From Eq. (5.16) we have

P(� n ;� n + ` );(xn ;xn + ` )(u1; u2; v1; v2) = P�; (xn ;xn + ` )(�; v 1; v2) (5.25)

where

� i = cn� i u1 + cn+ `� i u2:

We �rst consider the case wherè > 0. Using the same brand of reasoning that

we used in the 1-D case, we note that there exists exactly one value of i for which

(cn� i ; cn+ `� i ) 6= (0 ; 0) and for which � i is statistically independent of (xn ; xn+ ` ).

This is i = n + `, so that Eq. (5.25) can be written

P(� n ;� n + ` );(xn ;xn + ` )(u1; u2; v1; v2) = P� n + ` (c0u2)P�; (xn ;xn + ` )(� 0; v1; v2)

(5.26)

where onlyc0 remains since the other coe�cient is zero, and where

� 0
i =

8
><

>:

� i ; i < n + `;

0; i � n + `:
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According to Eq. (5.26), Condition I (Eq. (5.22)) of Lemma 5.2 will be satis�ed

for ` > 0 and k2 2 Z0 if

P�

 

c0
k
�

!

= 0 8k 2 Z0:

On the other hand, if k2 = 0, then Eqs. (5.22) and (5.25) yield

P(� n ;� n + ` );(xn ;xn + ` )

 
k1

�
; 0;

k1

�
; 0

!

= P�;x n

 

� 00;
k1

�

!
�
�
�
�
�
�
�
u1= k1=�

(5.27)

where

� 00
i = cn� i u1:

Then there exists exactly onei such that cn� i 6= 0 and for which � i is independent

of xn . This is i = n. Thus the right-hand side of Eq. (5.27) splits into a product

which goes to zero if

P�

 

c0
k
�

!

= 0 8k 2 Z0:

Thus Condition I is satis�ed for all (k1; k2) 2 Z2
0 subject to this requirement. By

symmetry, the ` < 0 case produces identical conditions.

Conditions II and III (Eqs. (5.23) and (5.24)) are handled byapplication of

the product rule as before. We omit the details, but it can be shown that these

conditions are satis�ed if Eqs. (5.20) and (5.21) hold. All three conditions being

satis�ed, Eq. (4.39) gives the total error spectrum in termsof the dither spectrum.

We collect below the conclusions from the above analysis.

Theorem 5.3 In an NSD quantizing system with arbitrary noise-shaping error

feedback and using �ltered dither of the form described by Eq. (5.1), the total error

will be wide-sense stationary and independent of the systeminput with a PSD given
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by

PSDe(f ) =
�
�
�1 � H (ej 2�fT )

�
�
�
2

"

PSD� (f ) +
� 2T

6

#

(5.28)

under the following conditions:

P�

 

c0
k
�

!

= 0 8k 2 Z0

and

P (1)
�

 

c0
k
�

!

= 0 8k 2 Z0:

If � is mRPDF we reach the simple but quite restrictive conclusion that:

Corollary 5.3 In an NSD quantizing system with arbitrary noise-shaping error

feedback and using �ltered dither with� being an iid mRPDF random process, the

total error will be wide-sense stationary and independent of the system input with

a PSD given by Eq (5.28) ifc0 is a non-zero integer andm � 2.

To appreciate just how restrictive this condition really is, it should be noted

that it is not satis�ed by simple highpass dither formed fromthe di�erence of two

successive samples of an RPDF random process. This is con�rmed by Fig. 5.7

which shows the spectrum of" from a noise shaper using this kind of dither and

a one tap feedback �lter with coe�cient � 0:5. (Of course, the PSDe(f ) will have

the expected form given by Eq. (5.28) if and only if PSD" (f ) has the form given by

Eq. (5.12); i.e., the sum of the dither spectrum and that of a white noise process.)

Also shown is the spectrum normalized by the predicted spectrum of Eq. (5.12).

Two static inputs (x = 0:0 and 0.5 LSB, respectively) were used. The normalized
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Figure 5.7: PSD" (f ) for an NSD quantizing system with error feedback and
using a dither �lter with RPDF input and coe�cients f 1.0,-1.0g. A single-
tap noise-shaping �lter with coe�cient � 0:5 was used. (a) Observed PSD for
0.0 LSB input, (b) observed PSD normalized by expected PSD for 0.0 LSB
input, (c) observed PSD for 0.5 LSB input, (d) observed PSD normalized by
expected PSD for 0.5 LSB input.
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spectra are not 
at, indicating that the error spectra are not of the expected shape.

Furthermore, the two spectra are di�erent, indicating that the error spectrum is

input dependent.

These e�ects decrease in size with increasing gain and complexity of the noise-

shaping �lter, since the quantizer input then begins to resemble the sum of the

system input with a large weakly-correlated Gaussian noisewhich will act as a

suitable dither signal. For instance, the plots in Fig. 5.8 correspond to those in

Fig. 5.7 with the sole di�erence being the use of a 3-coe�cient noise-shaping �lter

with psychoacoustically optimized coe�cients (refer to [45]). Although some varia-

tion of the spectrum with input is probably still present, it is apparently negligible.

5.2.2 SD Noise Shaping Systems

The analysis of SD systems with noise-shaping feedback is next. The straightfor-

ward generalization of Eq. (4.18), o�ered without proof, is

P� 1 ;� 2 ;x1 ;x2

 
k1

�
;
k2

�
;
k1

�
;
k2

�

!

= 0 8(k1; k2) 2 Z2
0: (5.29)

This, however, is the same condition as Eq. (5.22), and thus leads immediately to

the following theorem:

Theorem 5.4 In an SD system with arbitrary noise-shaping error feedbackand

using �ltered dither of the form described by Eq. (5.1), the total error will be wide-

sense stationary and independent of the system input with a PSD given by

PSDe(f ) =
�
�
�1 � H (ej 2�fT )

�
�
�
2 � 2T

6
(5.30)
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Figure 5.8: PSD" (f ) for an NSD quantizing system with error feedback and
using a dither �lter with RPDF input and coe�cients f 1.0,-1.0g. A 3-tap
FIR noise-shaping �lter with coe�cients f 1:33; � 0:73; 0:065g was used. (a)
Observed PSD for 0.0 LSB input, (b) observed PSD normalized by expected
PSD for 0.0 LSB input, (c) observed PSD for 0.5 LSB input, (d) observed
PSD normalized by expected PSD for 0.5 LSB input.
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under the following condition:

P�

 

c0
k
�

!

= 0 8k 2 Z0:

Corollary 5.4 In an SD quantizing system with arbitrary noise-shaping error feed-

back and using �ltered dither with� being an iidmRPDF random process, the total

error will be wide-sense stationary and independent of the system input with a PSD

given by Eq (5.30) ifc0 is a non-zero integer andm � 1.

This latter is a weaker restriction than for NSD systems, insofar asm � 2 is required

for the satisfaction of Theorem 5.3 (see Corollary 5.3).

A practical point regarding the implementation of SD systems with noise shap-

ing should be made. Subtraction of the dither obviously mustoccur when the

signal is replayed, because the point of quantizing is to restrict the resolution of

transmitted/stored data to �, and the dither signal will hav e �ner resolution than

this. Hence, the signal transmitted or stored is noty but w0 (see Fig. 5.6). The

dither must be either transmitted/stored along with the signal or regenerated so

that it can be subtracted at playback, but the dither must also be subtracted from

w0 before transmission/storage in order to calculate the total error " to be fed back

through H (z).

5.2.3 Results For Special Classes of Shapers

Although we have so far been unable to �nd weaker su�cient conditions than

those given in the theorems above, which guarantee input independence of the
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Figure 5.9: A system equivalent to that of Fig. 5.6 in the NSD case where all
the coe�cients of the error-feedback �lter, H (z), are integers.

error spectrum for an arbitrary noise shaper, some interesting results are known for

certain special classes of shapers. Consider for instance an NSD system in which

the feedback �lter H (z) is FIR and its �rst ` coe�cients are all zero. Then the total

error spectrum is wide-sense stationary and given by Eq. (5.28) if the conditions of

Theorem 5.1 are satis�ed and the dither �lter, G(z), is FIR with ci = 0 for i > ` .

This ensures thatx i contains no vestiges of any� j 's which will also be present in

the current dither sample,� i , so that x i and � i will be independent. An analogous

result exists for SD systems.

A remarkable result has been obtained for one important special class of NSD

noise shaper designs by Craven [46]. These shapers employ feedback �lters, H (z),

whose �lter coe�cients are all integers. Craven has shown that any such system

producesprecisely the same output as the system of Fig. 5.9, which employs no

feedback. (The e�ective dither �lter, 1 � H (z), must be minimum phase for Fig. 5.9

to be realizable; i.e., it must be invertible.) This means that for such noise shapers,

the broad class of shaped dithers satisfying only the conditions of Theorem 5.1

must produce the expected, input-independent error spectra. This is con�rmed
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Figure 5.10: PSD" (f ); for an NSD quantizing system with error feedback
and using a dither �lter with RPDF input and coe�cients f 1.0,-1.0g. The
system was presented with a null static input (0.0 LSB) and a single-tap
noise-shaping �lter with coe�cient 1.0 was used. (a) Observed PSD, (b)
observed PSD normalized by expected PSD.

by Fig. 5.10 which shows error spectra, unnormalized and normalized, for such a

system using the simple highpass dither which failed when a feedback �lter with

non-integer coe�cients was used.

5.3 The Raw Error of SD Systems

Consider an SD quantizing system with noise-shaping error feedback. It would be

nice to be able to play back the quantizer outputw0 without subtraction of the

dither if, for instance, the playback system did not have facilities for subtraction.

We will let � denote theraw error associated with the signalw0, where (see Fig. 5.6)

�
4
= w0 � x0

= e+ �:
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Using the z-transforms of the signals involved, we obtain

� (z) = [1 � H (z)]" (z) + � (z);

where the possible presence of a noise-shaping feedback �lter, H (z), has been as-

sumed.

Now if all samples of" were in general uncorrelated with all samples of� , we

could conclude that the power spectrum associated with� (z) was the sum of those

associated withe(z) = [1 � H (z)]" (z) and � (z), but this is not the case. We

anticipate that the dither signal will have to satisfy certain additional conditions

for this to be true. If H (z) � 0 we see thatw0 is just the output of an NSD system,

so we require that the dither satisfy the conditions appropriate to such a system

(see Theorem 5.3). IfH (z) 6= 0, however, the properties of the error� are not

apparent from the analysis conducted thus far.

We make the following observations:

E[� 2] = E[(e+ � )2]

= E[e2] + 2E[e� ] + E[� 2] (5.31)

E[� 1� 2] = E[(e1 + � 1)(e2 + � 2)]

= E[e1e2] + E[e1� 2] + E[e2� 1] + E[� 1� 2]: (5.32)

Let us write

1 � H (z) =
1X

n= �1

hnz� n

so that the i -th sample ofe can be expressed as

ei =
1X

n= �1

hn" i � n :
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We will consider the correlation between thei -th sample ofe and the j -th sample

of � . When i = j this quantity may be denoted byE[" i � j ] = E["� ]. When i 6= j

we will denoteE[" i � j ] as E["1� 2] (or, alternatively, as E["2� 1]). Now

E[ei � j ] = E

" 1X

n= �1

hn" i � n � j

#

=
1X

n= �1

hnE[" i � n � j ]

=
1X

m= �1
hi � mE["m � j ]: (5.33)

Let us consider the terms in this last sum without assuming, for now, that �

and x are statistically independent. We will use Eq. (3.7) which gives, for N = 2,

P" 1 ;" 2;� 1 ;� 2 (u" 1 ; u" 2 ; u� 1 ; u� 2 ) =
1X

k1= �1

1X

k2= �1

sinc

 

u" 1 �
k1

�

!

sinc

 

u" 2 �
k2

�

!

� P� 1 ;� 2;x1 ;x2

 

u� 1 �
k1

�
; u� 2 �

k2

�
; �

k1

�
; �

k2

�

!

: (5.34)

Consider �rst the m = j term in Eq. (5.33), and the following reduced form of

Eq. (5.34) where we have writtenP" m ;� m = P";� :

P";� (u" ; u� ) =
1X

k= �1

sinc

 

u" �
k
�

!

P�;x

 

u� �
k
�

; �
k
�

!

:

We see that

E["� ] =
� j

2�

� 2

P (1;1)
";� (0; 0)

=
� j

2�

� 2 1X

k= �1

sinc(1)

 

�
k
�

!

P (1;0)
�;x

 

�
k
�

; �
k
�

!

:

Thus E["� ] = 0 if

P (1;0)
�;x

 
k
�

;
k
�

!

= 0 8k 2 Z0: (5.35)
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On the other hand, if m 6= j then from Eq. (5.34) we obtain

P" 1 ;� 2 (u" 1 ; u� 2) =
1X

k1= �1

sinc

 

u" 1 �
k1

�

!

P� 1 ;� 2 ;x1 ;x2

 

�
k1

�
; u� 2 ; �

k1

�
; 0

!

:

(5.36)

Now

E["1� 2] =
� j

2�

� 2

P (1;1)
" 1 ;� 2

(0; 0)

=
� j

2�

� 2 1X

k1= �1

sinc(1)

 

�
k1

�

!

P (0;1;0;0)
� 1 ;� 2;x1 ;x2

 

�
k1

�
; 0; �

k1

�
; 0

!

(5.37)

so that E["1� 2] = 0 if

P (0;1;0;0)
� 1 ;� 2 ;x1 ;x2

 
k1

�
; 0;

k1

�
; 0

!

= 0 8k1 2 Z0: (5.38)

A similar analysis reveals thatE["2� 1] = 0 if

P (1;0;0;0)
� 1 ;� 2 ;x1 ;x2

 

0;
k2

�
; 0;

k2

�

!

= 0 8k2 2 Z0: (5.39)

Hence if Eqs. (5.35){(5.39) are satis�ed for all time lags between "1 and � 2 then we

may state that

E["m � j ] = 0 8(m; j ):

In this case Eq. (5.33) indicates that

E[ei � j ] = 0 8(i; j ):

Then Eqs. (5.31) and (5.32) become

E[� 2] = E[e2] + E[� 2] (5.40)

E[� 1� 2] = E[e1e2] + E[� 1� 2]: (5.41)
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Now, if Eq. (5.29) is also satis�ed, then" has a well-de�ned autocorrelation

function and

PSD" (f ) =
� 2T

6
;

so that

PSDe(f ) =
�
�
�1 � H (ej 2�fT )

�
�
�
2 � 2T

6
:

In this case the input-independent autocorrelation function of e is:

re(`)
4
=

8
><

>:

E[e2]; ` = 0;

E[e1e2](`); otherwise.

Comparing this with Eqs. (5.40) and (5.41), we conclude subject to satisfaction of

Eqs. (5.29), (5.35), (5.38) and (5.39) that

r � (`) = re(`) + r � (`);

so that

PSD� (f ) = PSD e(f ) + PSD � (f ):

Let us compare the additional requirements imposed above onan SD system

with the requirements typically imposed in an NSD system. Suppose that Eq. (5.29)

holds. If Eq. (5.38) and Eq. (5.39) also hold then all the conditions of Lemma 5.2

(i.e., Eqs. (5.22){(5.24)) are satis�ed. Furthermore, if Eq. (5.29) holds, then it

necessarily follows that

P�;x

 
k
�

;
k
�

!

= 0 8k 2 Z0:

If Eq. (5.35) also holds, then the conditions of Lemma 5.1 (i.e., Eqs. (5.15)) are

satis�ed for N = 2. We know, however, that all of these conditions are satis�ed

under the conditions of Theorem 5.3. Thus we can state the following:
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Theorem 5.5 If the dither signal in an SD system, possibly using noise-shaping

error feedback, satis�es the conditions of Theorem 5.3, then the raw error will be

wide-sense stationary and independent of the system input with a PSD given by

PSD� (f ) =
�
�
�1 � H (ej 2�fT )

�
�
�
2 � 2T

6
+ PSD� (f ): (5.42)

If we assume that� and x are statistically independent (i.e.,H (z) � 0 so that

no error feedback is present) then the conditions weaken to those imposed to yield

Theorem 5.1, and Eq. (5.42) simpli�es to yield Eq. (4.39). This is not surprising,

since, in the absence of feedback,w0 is the output of an ordinary NSD system.

These results allow for spectral shaping of the raw error of an SD system. Say

for instance that a highpass error spectrum is desired in a noise shaping SD system

whether or not the dither is subtracted at playback. By usinga simple highpass

4RPDF dither, generated using a 2RPDF� and a dither �lter with coe�cients

f 1; � 1g;

Theorem 5.3 will be satis�ed. If a simple highpass noise-shaping feedback �lter,

H (z) = z� 1, is used, then PSDe(f ) and PSD� (f ) will both be highpass so that

PSD� (f ) will be as well. This is con�rmed by the spectra in Fig. 5.11 which are

taken from a computer simulation of the described system. Note that a lower total

noise power is still achieved by subtracting the dither at playback. In units of

� 2=12 the variance ofe is 2 (the power gain of 1� H (z)) while that of � is 6 (the

power gain of 1� H (z), plus the power of 2RPDF dither multiplied by the power

gain of the dither �lter). It should be noted that in accordance with the conditions

of Theorem 5.3, 1RPDF noise� is not su�cient to eliminate spectral modulation
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(indeed, if such dither is used in the system described aboveand x0 � 0, then

� � 0).

5.4 Multi-Channel Dither Generation

When multiple channels ofnRPDF dither are to be generated, the generation ofn

new RPDF pseudo-random values per channel per sample may become computa-

tionally burdensome. It is tempting to try to reuse computedrandom numbers in

di�erent channels. For instance, Gerzon et al. [46] have proposed an e�cient non-

subtractive dither generation scheme for stereo signals which they call \diamond

dither". A schematic of the proposed generator is shown in Fig. 5.12. Here� 1 and

� 2 are iid, statistically independent of each other, and 1RPDF. Thus � 1 and � 2 are

iid and 2RPDF, but not statistically independent of each other. In this design,

only two new 1RPDF pseudorandom numbers need to be generatedeach sampling

period, as opposed to four if statistically independent 2RPDF dithers were to be

generated for each channel.

In general, interchannel sharing of random numbers for the purposes of dither

generation will introduce interchannel correlations between error signals. This inter-

channel error correlation may be undesirable in certain applications. For instance,

such correlations may a�ect the spatial image of the noise inmulti-channel audio

signals. The remainder of this section is dedicated to the assessment of such corre-

lations and to methods of eliminating them. Generalizations of the Gerzon scheme

to e�ciently produce multi-channel dithers with other pdf' s will be explored. (Only

NSD quantizing systems will be considered, since SD systemsonly require one new

RPDF dither value per sample per channel anyway.)
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Figure 5.11: PSDe(f ) and PSD� (f ) for an SD quantizing system with error
feedback and using a dither �lter with 2RPDF input and coe�ci ents f 1; � 1g.
A simple highpass noise-shaping �lterH (z) = z� 1 was used. The system had
a nominal sampling rate of 44.1 kHz and was presented with a static null
input. (a) PSD e(f ), (b) PSD� (f ).
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Figure 5.12: E�cient generation scheme for stereo non-subtractive dither.
The � i 's are iid and uniformly distributed.
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Figure 5.13: E�cient generation scheme for multi-channel non-subtractive
dither. The � i 's are assumed to be iid.
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Fig. 5.13 illustrates a generalized multi-channel dither generation scheme. We

denote the output of the system by the random vector

� = ( � 1; � 2; : : : ; � N )T

where the superscriptT denotes matrix transposition. � is assumed to be given by

the equation

� = A �

where

� = ( � 1; � 2; : : : ; � M )T

is a random vector with iid components and

A = ( aij )

is a constant realN � M matrix. (It will be shown below that it is not possible to

generate more thanN uncorrelated random processes from combinations of only

N random processes, and thus we will assume thatM � N .) The dither values

obtained are

� i =
MX

j =1

aij � j ; i = 1; 2; : : : ; N:

We will assume that the� j 's are each iid random processes of the easily generated

1RPDF variety, and furthermore that they are statistically independent of one

another at any given instant in time.

We are interested in correlations between total errors in di�erent channels. The-

orem 4.9 has thus far been applied to errors separated in timein a single channel

system, but also applies directly to simultaneous errors indi�erent channels (or

to any other pair of errors generated by identical NSD quantizers). In order to
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use this theorem, we must �rst �nd P� 1 ;� 2 . We begin by considering the statistical

relationship between two typical� i 's, say � 1 and � 2. Now

p� 1 ;� 2 ;� (� 1; � 2; � ) = p� 1 ;� 2 j � (� 1; � 2; � )
MY

j =1

p� j (� j )

= �

0

@� 1 �
MX

j =1

a1j � j

1

A �

0

@� 2 �
MX

j =1

a2j � j

1

A
MY

j =1

p� j (� j ):

Performing the necessary Fourier transforms yields

P� 1 ;� 2 ;� (u� 1 ; u� 2 ; u� ) =
MY

j =1

P� j (u� j + a1j u� 1 + a2j u� 2 )

whereu� = ( u� 1 ; u� 2 ; : : : ; u� M ). Then, setting u� = 0, we have

P� 1 ;� 2 (u� 1 ; u� 2) =
MY

j =1

P� j (a1j u� 1 + a2j u� 2): (5.43)

By way of example, we consider the stereo dither scheme discovered by Gerzon,

with its associated matrix

A =

2

6
4

1 1

1 � 1

3

7
5 :

Here we have

P� 1 ;� 2 (u� 1 ; u� 2) = sinc (u� 1 + u� 2 ) sinc (u� 1 � u� 2 );

the inverse Fourier transform of which is

p� 1 ;� 2 (� 1; � 2) =
1
2

� �

� � 1 + � 2

2

�

� �

� � 1 � � 2

2

�

:

As illustrated in Fig. 5.14, this pdf is supported on a diamond-shaped region in the

� 1� 2-plane, giving rise to the denotation \diamond dither."
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Figure 5.14: The support of the \diamond dither" joint pdf, p� 1 ;� 2 (� 1; � 2).

The interchannel dither correlation can now be calculated in the usual fashion:

E[� 1� 2] =
� j

2�

� 2

P (1;1)
� 1 ;� 2

(0; 0)

=
MX

j =1

a1j a2j E[� 2
j ] +

MX

j =1

MX

i =1
i 6= j

a1i a2j E[� i ]E [� j ]:

Since� is assumed to be iid 1RPDF, it has zero mean and a variance of �2=12. In

this case the above equation simpli�es to give

E[� 1� 2] =
� 2

12

MX

j =1

a1j a2j : (5.44)

If we require that interchannel error correlations be independent of the input

signal distribution, then we must ensure that the conditions of Theorem 4.9 are

satis�ed. We will brie
y defer discussion of the requirements placed upon the

matrix A by the conditions of this theorem, and proceed under the assumption

that they are satis�ed. In this case

E["1"2] = E[� 1� 2]:
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Thus, in order to eliminate all interchannel error correlations, we require that

E[� i � j ] = 0 for all i; j such that i 6= j . Eq. (5.44) indicates that this requirement is

simply that the coe�cient vectors

f (ai 1; ai 2; ai 3; : : : ; aiM ); i = 1; 2; : : : ; Ng

(i.e., the row vectors ofA ) form a mutually orthogonal set2. Since we can only

have N orthogonal M -vectors if M � N this implies that we cannot generate

more orthogonal dither processes than we employ independent � 's. While matrices

meeting the orthogonality requirements are abundant, the additional requirement

that the resulting dither be nRPDF for some givenn complicates matters. This

requires that the coe�cient vectors each contain preciselyn entries equal to either

1 or � 1 and that the remaining entries be zeros.

It turns out that if the the row vectors of A are mutually orthogonal, then the

conditions of Theorem 4.9 will be satis�ed whenever the desired order of dither is

n � 2. In order to demonstrate this we consider a typical pair of dither values, � 1

and � 2, and refer to Eq. (5.43). The �rst condition of the theorem (Eq. (4.36)) is

that

P� 1 ;� 2

 
k1

�
;
k2

�

!

=
MY

j =1

P� j

 

a1j
k1

�
+ a2j

k2

�

!

= 0 8(k1; k2) 2 Z2
0:

Let us assume, for purposes of contradiction, that� is RPDF and that the rows of

A are mutually orthogonal vectors consisting of elementsaij 2 f 0; 1; � 1g, but that

the above condition does not hold. That is, there exists (k1; k2) = ( k�
1; k�

2) 6= (0 ; 0)

such that no term in the given product vanishes. Since the terms are sinc functions,

2This is not quite the same as saying thatA is anorthogonal matrix, which requires furthermore

that the matrix be square and that each of its rows has unit magnitude.
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this means that

�

k�
1 k�

2

�
2

6
4

a11 a12 : : : a1M

a21 a22 : : : a2M

3

7
5 =

�

0 0 : : : 0
�

which would imply, in particular, that for all j 1; j 2 2 f 1; 2; : : : ; M g, j 1 6= j 2,

�

k�
1 k�

2

�
2

6
4

a1j 1 a1j 2

a2j 1 a2j 2

3

7
5 =

�

0 0
�

: (5.45)

However, since the rows ofA are mutually orthogonal, there must exist at least

one pair (j 1; j 2) such that Eq. (5.45) has only the trivial solution (k�
1; k�

2) = (0 ; 0),

which provides a contradiction.

Again from Eq. (5.44) we have

P (0;1)
� 1 ;� 2

 
k1

�
; 0

!

=
MX

j =1

a2j P (1)
�

 

a1j
k1

�

!
MY

i =1
i 6= j

P�

 

a1i
k1

�

!

:

This expression goes to zero for allk1 2 Z0, so that the second condition of Theo-

rem 4.9 (Eq. (4.37)) is satis�ed, whenever� is RPDF, ai;j 2 f 0; 1; � 1g and n � 2.

In this case, the �nal condition of the theorem (Eq. (4.38)) is similarly satis�ed.

A multi-channel dither generator may be considered optimalif it yields uncor-

related dither values and requires the generation of just one new random number

per sample per channel. The latter will be the case if the matrix A is square (i.e.,

N = M ). We will call such schemes and their associated matrices (N; n)-optimal,

where, again,N is the number of channels of dither produced andn is the order of

the dither. We have seen that aN � N matrix A = ( aij ) is (N; n)-optimal if:

1. aij 2 f 0; 1; � 1g 8(i; j ),

2. each row of the matrix contains preciselyn entries of absolute value one, and
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3. the rows of the matrix form a set of mutually orthogonal vectors.

The following simple (N; n)-optimal matrices, the �rst of which corresponds to a

stereo \diamond dither" generator, can serve as building blocks for the construction

of many others:

(N; n) = (2 ; 2) :

2

6
4
1 1

1 � 1

3

7
5 ;

(N; n) = (4 ; 3) :

2

6
6
6
6
6
6
6
6
4

0 � 1 1 1

1 0 � 1 1

� 1 1 0 1

1 1 1 0

3

7
7
7
7
7
7
7
7
5

;

(N; n) = (6 ; 5) :

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 1 1 � 1 � 1 1

1 0 � 1 1 � 1 1

1 � 1 0 � 1 1 1

� 1 1 � 1 0 1 1

� 1 � 1 1 1 0 1

1 1 1 1 1 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

:

The following rules then allow construction of other optimal schemes (the proofs

are by inspection):

Rule 1. Interchanging two rows or two columns in a (N; n)-optimal matrix yields a

(N; n)-optimal matrix.

Rule 2. Multiplying a row or a column of a (N; n)-optimal matrix by � 1 yields a

(N; n)-optimal matrix.
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Rule 3. If A is a (N1; n)-optimal matrix, B is a (N2; n)-optimal matrix, and 0 is a

N1 � N2 matrix of zeros, then thedirect sum

A � B
4
=

2

6
4

A 0

0T B

3

7
5

is a (N1 + N2; n)-optimal matrix.

Rule 4. If A = ( aij ) is a (N1; n1)-optimal matrix and B is a (N2; n2)-optimal matrix

then the Kronecker or direct product [47]

A 
 B
4
=

2

6
6
6
6
6
6
6
6
4

a11B a12B : : : a1N1 B

a21B a22B : : : a2N1 B
...

...
...

aN11B aN12B : : : aN1N1B

3

7
7
7
7
7
7
7
7
5

is a (N1N2; n1n2)-optimal matrix.

For example, combining two Gerzon-type (2,2)-optimal matrices of the form

A =

2

6
4
1 1

1 � 1

3

7
5

using Rule 3 yields the (4,2)-optimal matrix

A � A =

2

6
6
6
6
6
6
6
6
4

1 1 0 0

1 � 1 0 0

0 0 1 1

0 0 1 � 1

3

7
7
7
7
7
7
7
7
5

:

This corresponds to two Gerzon-type schemes operating independently in parallel.

On the other hand, combining the same two (2,2)-optimal matrices using Rule 4
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we obtain the (4,4)-optimal matrix

A 
 A =

2

6
6
6
6
6
6
6
6
4

1 1 1 1

1 � 1 1 � 1

1 1 � 1 � 1

1 � 1 � 1 1

3

7
7
7
7
7
7
7
7
5

:

This corresponds to two pairs of Gerzon-type schemes, each member of the second

pair receiving one of its inputs from each member of the �rst pair.

For arbitrary N and n, such optimal matrices do not generally exist. For in-

stance, it can be checked by trial and error that no (N; n)-optimal scheme exists for

(N; n) 2 f (3; 2); (3; 3); (5; 2); (5; 3); (5; 4); (5; 5)g: In such cases, extra dither values

can be generated using an optimal scheme and some then discarded. This reduces

the computational e�ciency of the scheme, but using the above rules a matrix with

roughly the desired number of channels and order of dither can be found.

For most multi-channel audio applications, Gerzon-type optimal generators op-

erating independently in parallel are appropriate, since these will produce the

2RPDF dither required to render the �rst and second moments of the total er-

ror input independent. For image processing or measurementapplications, optimal

schemes generating higher order dithers may be of interest in order to render higher

error moments input independent.



Chapter 6

Digital Dither

Some comment is required concerning the special nature ofrequantization oper-

ations, in which the binary wordlength of data is reduced prior to its storage or

transmission. This operation takes place entirely within the digital domain, so that

both the input and dither signals are discrete valued due to the �nite wordlengths

available in practical digital systems. The continuous pdf's discussed thus far are

unattainable in a purely digital scheme so that the properties of true digital dither

signals require further investigation.

The following discussion represents a theoretical complement to empirical re-

sults presented in [16]. It is not intended to be exhaustive,but merely to demon-

strate that there is no great di�culty in extending the resul ts obtained for analogue

systems to digital ones, and to illustrate how this may be done.

140
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6.1 Digital Dither pdf 's

Consider a quantizing system which applies digital dither to digital data before

removing its L least signi�cant bits. We will use � to denote the magnitude of an

LSB of the higher-precision signal to be requantized, and

� = 2 L �

for an LSB of the requantized output.

Let us consider the following digital dither pdf

p� (� ) = � ~p� (� )W� (� ); (6.1)

where ~p� (� ) represents an absolutely integrable function which serves as a \weight-

ing" for the impulse train. ~p� is assumed to be normalized such that

Z 1

�1
p� (� )d� = �

1X

`= �1

~p� (`� ) = 1 :

For instance, ~p� might be the pdf of a dither of ordern, such as annRPDF dither,

in which case it is straightforward to show using Poisson's summation formula

(Theorem A.7) that ~p� has the above normalization. In general, however, ~p� need

not correspond to a pdf since it need not subtend unit area.

Taking the Fourier transform of Eq. (6.1) we �nd that

P� (u) =
h

~P� ? W1
�

i
(u)

=
1X

`= �1

~P�

 

u �
`
�

!

(6.2)

where ~P� (u) is the Fourier transform of ~p� (� ). Note that even if ~P� satis�es the

conditions of Theorem 4.8 (for someM ), P� will not, due to the modulation of ~P� (u)
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by the impulse train W1
�
(u). Fortunately, we do not require that these conditions

be satis�ed in a digital system, since the requirement thatE["m jx] be constant

for all values of the system input is not of interest. Instead, we require only

that the moments be constant for a subset of all conceivablex values, namely

f xjx = n�; n 2 Zg, which includes all values that are representable in the digital

system. Thus we assume that the pdf of the system input can be expressed in the

form

px (x) = � ~px (x)W� (x) (6.3)

where ~px is a continuous function normalized such that the integral of Eq. (6.3) is

unity. Then

Px (u) = [ ~Px ? W1
�
](u)

=
1X

`= �1

~Px

 

u �
`
�

!

: (6.4)

We will make similar assumptions regarding joint pdf's of interest. Thus we will

consider

p� 1 ;� 2 (� 1; � 2) = � 2~p� 1 ;� 2 (� 1; � 2)W� (� 1; � 2)

with

Z 1

�1

Z 1

�1
p� 1 ;� 2 (� 1; � 2)d� 1d� 2 = � 2

1X

`1= �1

1X

`2= �1

~p� 1 ;� 2 (`1�; ` 2� ) = 1 :

Then

P� 1 ;� 2 (u1; u2) =
h

~P� 1 ;� 2 ? W1
�

i
(u1; u2)

=
1X

`1= �1

1X

`2= �1

~P� 1 ;� 2

 

u1 �
`1

�
; u2 �

`2

�

!

;
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where ~P� 1 ;� 2 (u1; u2) is the two-dimensional Fourier transform of ~p� 1 ;� 2 (� 1; � 2). Sim-

ilarly, we assume that we can write

Px1 ;x2 (u1; u2) =
1X

`1= �1

1X

`2= �1

~Px1 ;x2

 

u1 �
`1

�
; u2 �

`2

�

!

:

6.2 Digital SD Systems

Now,

Px

 

u �
k
�

!

=
1X

`= �1

~Px

 

u �
k
�

�
`
�

!

=
1X

`= �1

~Px

 

u �
k + 2 L `

�

!

so that, from Eq. (3.7), we have

Pq;x(uq; ux) =
1X

k= �1

sinc

 

uq �
k
�

!

P�

 

�
k
�

! 1X

`= �1

~Px

 

ux �
k + 2 L `

�

!

:

Thus for q and x to be statistically independent for arbitrary ~Px we require that

P�

 
k
�

!

= 0

for all k 2 Z except, possibly, when
k
2L

2 Z:

(6.5)

In this case

Pq;x(uq; ux) =
1X

k= �1

sinc

 

uq �
2L k
�

!

P�

 

�
2L k
�

!
1X

`= �1

~Px

 

ux �
2L (k + `)

�

!

=
1X

k= �1

sinc

 

uq �
k
�

!

P�

 

�
k
�

! 1X

`= �1

~Px

 

ux �
`
�

!

= Px(ux )
1X

k= �1

sinc

 

uq �
k
�

!

P�

 

�
k
�

!
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where Eq. (6.4) has been used in the last step. Note that in thelimit as � ! 0

(i.e., as L ! 1 ) Eq. (6.5) becomes Eq. (4.16), the condition of Theorem 4.4 for

analogue systems. This re
ects the conception of an analogue system as a digital

system with in�nite precision (i.e., an in�nite number of bits).

Now from Eq. (6.2) we see that if~P� meets the conditions of Theorem 4.4, i.e.

that

~P�

 
k
�

!

= 0 8k 2 Z0;

then P� will go to zero at the places required by Eq. (6.5). Since Eq. (6.2) shows

that P� is periodic such that

P�

 
k
�

!

= P� (0) = 1 8k 2 Z;

we then obtain

Pq(uq) =
1X

k= �1

sinc

 

uq �
k
�

!

=
h
sinc? W1

�

i
(uq):

Thus (using Theorem A.5)

pq(q) =
�
2L

� � (q)W� (q)

and in this sense the total error is uniformly distributed.

Thus we have the following theorem:

Theorem 6.1 For a digital SD system in which requantization is used to remove

the L least signi�cant bits of binary data, the total error is statistically independent

of the system input and uniformly distributed if a digital dither (with the same

precision as the input data) is applied for which

~P�

 
k
�

!

= 0 8k 2 Z0:
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It is worth noting that using a dither of higher precision than the input signal is

of no bene�t. For instance, a dither cf which satis�es the conditions of Theorem 6.1

for L = 8 will also satisfy them for L = 4, but for a quantizing system in which the

precision is reduced by only four bits there is no advantage associated with this cf

over one which only satis�es the conditions forL = 4.

By the usual means the analysis may be extended to the joint statistics of errors

separated in time. It is straightforward to show that for twosuch errors,q1 and q2,

Pq1 ;q2 ;x1 ;x2 (uq1 ; uq2 ; ux1 ; ux2 )

=
1X

k1= �1

1X

k2= �1

1X

`1= �1

1X

`2= �1

sinc

 

uq1 �
k1

�

!

sinc

 

uq2 �
k2

�

!

� P� 1 ;� 2

 

�
k1

�
; �

k2

�

!

~Px1 ;x2

 

ux1 �
k1 + 2 L `1

�
; ux2 �

k2 + 2 L `2

�

!

so that if

P� 1 ;� 2

 
k1

�
;
k2

�

!

= 0

for all (k1; k2) 2 Z2 except, possibly, when

 
k1

2L
;

k2

2L

!

2 Z2

then

pq1 ;q2 (uq1 ; uq2 ) =
�
2L

� � (q1)W� (q1) �
�
2L

� � (q2)W� (q2):

Henceq1 andq2 are statistically independent so that the total error will be spectrally

white.

Subject to the satisfaction of the conditions of Theorem 6.1, q and x are statis-

tically independent so we may immediately write down an expression for the cf of

the system output:

Py(u) = Pq(u)Px(u):
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If, in addition, the dither is iid, then

Py1 ;y2 (u1; u2) = Pq1 (u1)Pq2 (u2)Px1 ;x2 (u1; u2):

6.3 Digital NSD Systems

From Eq. (4.27) we have

G� (u) =
sin(� � u)

� � u
P� (u)

=
sin(� � u)

� � u

1X

k= �1

~P�

 

u �
k
�

!

: (6.6)

Then from Eq. (3.8) we have

P" (u) =
1X

k= �1

1X

`= �1

G�

 

u �
k
�

!

~Px

 

�
k + 2 L `

�

!

so that

E["m ] =
� j

2�

� m

P (m)
" (0)

=
� j

2�

� m 1X

k= �1

1X

`= �1

G(m)
�

 

�
k
�

!

~Px

 

�
k + 2 L `

�

!

: (6.7)

The only way that this quantity can be independent of~Px is if we require that

G(m)
�

 
k
�

!

= 0

for all k 2 Z except, possibly, when
k
2L

2 Z:

(6.8)

Note that in the limit as � ! 0 (i.e., asL ! 1 ) Eq. (6.8) becomes Eq. (4.28), the

condition of Theorem 4.7 for analogue systems.
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Returning to Eq. (6.6) and di�erentiating, we have

dm G�

dum
(u) =

1X

k= �1

mX

r =0

 
m
r

!
dr

dur

"
sin(� � u)

� � u

#
dm� r ~P�

dum� r

 

u �
k
�

!

: (6.9)

If ~P� meets the conditions of Theorem 4.8 (forM = m), then all terms in Eq. (6.9)

involving the derivatives of ~P� go to zero at the places required by Eq. (6.8) except

for the single (r = 0) term involving the m-th derivative. Fortunately, this term

involves the zeroth derivative of the leading sinc function, which goes to zero at all

the required places. This yields the following theorem:

Theorem 6.2 For a digital NSD system in which requantization is used to remove

the L least signi�cant bits of binary data,E[" ` ] is independent of the input distribu-

tion for ` = 1; 2; : : : ; M , if a non-subtractive digital dither (with the same precision

as the input data) is applied for which

~P (i )
�

 
k
�

!

= 0

8k 2 Z0 and i = 0; 1; 2; : : : ; M � 1:

This theorem is a digital counterpart of Theorem 4.8. It is interesting to note

that no such analogue exists for Theorem 4.7 in terms of~P� .

As before, we observe that using a dither of higher precisionthan the input

signal is of no bene�t. For instance, a dither cf which satis�es the conditions of

Eq. (6.8) with m = 1 for L = 8 will also satisfy them for L = 4, but for a quantizing

system in which the precision is reduced by only four bits there is no advantage

associated with this cf over one which only satis�es the conditions for L = 4.
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We would like to write down expressions for the moments of thetotal error. If

we choose a dither such that Eq. (6.8) holds, many terms vanish from Eq. (6.7),

leaving

E["m ] =
� j

2�

� m 1X

k= �1

G(m)
�

 
k
�

!
1X

`= �1

~Px

 
`
�

!

:

Now, from Eq. (6.4) we know that

Px(0) =
1X

`= �1

~Px

 
`
�

!

= 1:

Thus

E["m ] =
� j

2�

� m 1X

k= �1

G(m)
�

 
k
�

!

(6.10)

which is precisely them-th moment of a notional random variable with pdf
� �
2L

� � ? p�

�

(" )W� (" );

although this is not, of course, the pdf of" .

Frequently, dithers in digital systems will be given a 2's-complement [36] repre-

sentation and thus will exhibit a mean which di�ers slightly from zero. This will

be re
ected in the appearance of a small non-zero mean error which, of course, will

be input independent if an appropriate dither pdf has been chosen.

To express the moments of the system output we impose the conditions of

Theorem 6.2 upon Eq. (4.41), obtaining

E[ym ] =
mX

r =0

 
m
r

! 1X

k= �1

" � j
2�

� r

G(r )
�

 
k
�

!# " � j
2�

� m� r

P (m� r )
x

 
k
�

!#

=
mX

r =0

 
m
r

!

E[" r ]E [xm� r ];

where we have observed from Eq. (6.4) thatPx (u) is periodic with period 1=� so

that for any k 2 Z
� j

2�

� m� r

P (m� r )
x

 
k
�

!

=
� j

2�

� m� r

P (m� r )
x (0) = E[xm� r ]:
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E[" r ] is given by Eq. (6.10).

6.4 Quantized Dithers

The treatment presented above is most appropriate to dithers generated entirely

in the digital domain using, for instance, pseudo-random number generation al-

gorithms. In particular, we have shown that whenever the weighting function ~p�

corresponds to the pdf of an analogue dither of ordern (as de�ned in Section 2.3),

the associated digital dither with pdf given by Eq. (6.1) shares the bene�cial prop-

erties of its analogue counterpart.

In the case where a digital dither signal is generated by �ne quantization of

an analogue dither signal, the details of the derivation change only slightly. The

forms of the Theorems, however, remain the same, with~P� representing the cf of

the analogue signal. This can be seen directly using Eq. (4.5), for the pdf of the

digital dither will be

p� (� ) = [ � � � ? ~p� ](� )W� (� )

with cf

P� (u) =

"
sin(��u )

��u
~P� (u)

#

? W1
�
(u):

This expression should be compared with Eq. (6.2). Note thatif ~P� satis�es the

conditions of the Theorems, then so will the quantity

sin(��u )
��u

~P� (u):
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6.5 Non-Stochastic Quantizers

In some cases, stochastic quantizers may not be practical toimplement. This is not

a problem if the signals in question are continuous-valued.In this case the addition

of dither will ensure that the quantizer input resides at a quantizer-step edge with

zero probability. On the other hand, if digital signals are in use, the probability

that the quantizer input resides at a step edge is always greater than zero. In this

instance it makes a considerable di�erence to the quantizeroutput (and total error)

whether the quantizer rounds up, down, or stochastically atthese edges.

We will now explore the consequences of choosing a quantizerwhich always

rounds up at step edges (a similar argument applies to quantizers which round

down). We note that if a (dc) virtual o�set � such that 0 < � < � is introduced into

the dither signal, the quantizer output is una�ected exceptthat quantizer inputs

residing at step edges are consistently rounded up. We can thus analyze digital

dithered systems with deterministic requantizers using such a notional dc o�set,

which is a purely mathematical device without physical counterpart. Proceeding

otherwise as we did before, Eq. (6.2) becomes

P� (u) = e� j 2��u
1X

`= �1

~P�

 

u �
`
�

!

:

First consider an SD system. Eq. (6.5) holds under the same assumptions as

before; i.e., that

~P�

 
k
�

!

= 0 8k 2 Z0:

In this case we obtain

Pq(uq) =
1X

k= �1

sinc

 

uq �
k
�

!

ej 2��k=�

= sinc (uq) ?
h
W1

�
(uq)ej 2��u q

i
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so that

pq(q) =
�
2L

� � (q)W� (q+ � ):

This equation is not quite right. It is o�set by � because the dither subtracted after

quantization contained the virtual o�set. Removing this o�set yields the correct

expression:

pq(q) =
�
2L

� � (q � � )W� (q):

In other words, the input and quantization error are statistically independent of

each other under the same conditions as before and the error pdf is precisely what

one would expect.

Now consider an NSD system with virtually o�set digital dither. Eq. (6.9)

becomes

dmG�

dum
(u) =

1X

k= �1

mX

r =0

 
m
r

!
dr

dur

"
sin(� � u)

� � u
e� j 2��u

#
dm� r ~P�

dum� r

 

u �
k
�

!

(6.11)

so that Theorem 6.2 holds precisely as before. Eq. (6.10) holds if the o�set dither

pdf is used in the calculations since, in this case, no dithersubtraction takes place

to introduce spurious o�sets.



Chapter 7

Conclusions

7.1 SD and NSD Quantizing Systems

We will take this �nal opportunity to summarize the principa l di�erences between

SD and NSD systems.

First, the dither signal must be available for subtraction at playback in SD

systems, and so either the dither sequence or information su�cient to reconstruct

it must be stored or transmitted with the signal. That NSD systems do not require

this added information at playback is their primary advantage over SD systems.

On the other hand, SD systems can render the total error signal statistically

independent of the input signal as well as rendering error samples separated in time

statistically independent of one another. This ensures that the power spectrum of

the total error is independent of the system input, and that it is spectrally 
at

(white) even if the dither signal is not. A dither capable of doing all this is simple

152
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iid RPDF dither. The total error variance in SD systems is always � 2=12.

NSD systems, on the other hand, cannot render the total errorstatistically

independent of the input, but can only render speci�ed moments of the error input

independent. Furthermore, dithers of successively higherorder are required for

each moment to be so rendered. For instance, to make the mean and variance

of the total error independent of the input, a second-order dither is required|

say 2RPDF (TPDF) dither with twice the variance of simple RPDF dither. The

increased dither variance is re
ected in increased total error variance, which is

� 2=4 for 2RPDF dither, and it has been shown (see Theorem 4.11) that this is

the lowest possible total error variance achievable if the �rst two error moments

are to be successfully rendered input independent. Note that the resulting error

variance is three times as great as that of an SD system, whichrenders the error

statistically independent of the system input, thereby ensuring the constancy of

all the error moments. This di�erence in the resulting total error variance is the

principal advantage of SD systems over NSD systems.

Another di�erence between the two types of systems is that inan SD system the

total error spectrum is 
at irrespective of the dither spectrum, whereas spectrally

shaped non-subtractive dither will result in a non-
at error spectrum which, if the

system is properly dithered, will be the sum of the dither spectrum and a white

\quantization noise" component. Some interest has been expressed in tailoring the

shape of the dither to result in total error spectra which areperceptually quieter

than 
at spectra. Unfortunately the aforementioned white component is una�ected

by altering the dither spectrum. Thus, for such purposes, itis usually preferable

to use noise-shaping error feedback, which can shape the entire error spectrum

as desired. Conditions have been given above (see Section 5.2) which will ensure
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that the resulting error spectrum is of a �xed predictable form. Spectrally shaped

dithers may still be of interest in high-speed applications, however, since non-white

dithers of any order can be generated using only one new pseudo-random number

per input sample.

It has been shown that if the quantizer output from an SD system, with or

without noise-shaping error feedback, is to be replayed without subtraction of the

dither signal, then, to avoid input-dependent spectral modulation of the error,

the dither used should satisfy the conditions necessary to ensure absence of error

spectral modulation in an NSD system.

7.2 Audio Applications

Much of the present investigation was originally motivatedby questions which arose

in audio signal processing. Some comments regarding such applications seems ap-

propriate.

For audio signal processing purposes, there seems to be little point in rendering

any moments of the total error other than the �rst and second independent of the

input. Variations in higher moments are believed to be inaudible and this has been

corroborated by a large number of psycho-acoustic tests conducted by the authors

and others [13, 21]. These tests involved listening to a large variety of signals (sinu-

soids, sinusoidal chirps, slow ramps, various periodically switched inputs, piano and

orchestral music, etc.) which had been requantized very coarsely (to 8 bits from

16) in order to render the requantization error essentiallyindependent of low-level

non-linearities in the digital-to-analogue conversion system through which the lis-
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tening took place. In addition, the corresponding total error signals (output minus

input) were used in listening tests in order to check for any audible dependences

on the input. Using undithered quantizers resulted in clearly audible distortion

and noise modulation in the output and error signals. A subtractively dithered

quantizing system using iid 1RPDF dither was found to eliminate all audible input

dependences in the error signal, which was con�rmed to be audibly equivalent to

a steady white noise. A non-subtractively dithered quantizing system using the

same dither eliminated all distortion, but the residual noise level was found to vary

audibly in an input-dependent fashion. When 2RPDF dither was employed, no

instance was found in which the error was audibly distinguishable from a steady

white noise entirely unrelated with the input, although thelevel of this noise was, of

course, somewhat higher than that observed in the subtractively-dithered system.

Admittedly, these tests were informal, and there remains a need for formal psycho-

acoustic tests of this sort involving many participants under carefully controlled

conditions.

The use of of non-subtractive, iid 2RPDF dither is recommended for most audio

applications requiring multi-bit quantization or requantization operations, since

this type of dither renders the power spectrum of the total error independent of

the input, while incurring the minimum increase in error variance. This kind of

dither is easy to produce for digital requantization purposes by simply summing

two independent 1RPDF pseudo-random processes, which may be rapidly generated

using linear congruential algorithms [48, 21]. The resulting digital dither can be

used to feed a digital-to-analogue converter for analogue dithering applications.

Important extensions of the work reported herein would include the analysis of

systems of interest incorporating non-linearities other than in�nite, uniform quan-
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tizers. In particular, a complete statistical descriptionof non-linear systems with

feedback, such as sigma-delta converters, awaits development.

In closing, it is proposed that appropriate dithering priorto (re)quantization

is as �tting as appropriate anti-alias �ltering prior to sampling|both serve to

eliminate classes of signal-dependent errors.
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Appendix A

Generalized Functions

This appendix provides a brief outline of the theory oftempered generalized func-

tions, also known astempered distributions. Few results will be proven in detail,

but appropriate references will be given and some theoretical issues arising in the

body of the thesis will be resolved. It will be assumed that the reader is familiar

with the L1 Fourier transform as de�ned by Eq. (2.1).

De�nition A.1 A function � 2 C1 (R n ) is said to be arapidly decreasing test

function if

sup
x2 R n

jx � � (� )(x)j < 1

for all pairs of multi-indices � , � . The vector space of such functions is denoted by

S.

164
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This space contains, for instance, Gaussians and even functions compactly sup-

ported on any given interval such as� (ax + b) where a; b2 R and

� (x) =

8
><

>:

e1=(x2 � 1); jxj < 1;

0; otherwise.

Theorem A.1 S is stable under the following operations: di�erentiation,multi-

plication by polynomials, a�ne transformations and the (L1) Fourier transform.

Proof : The assertion is that each of the indicated operations mapsS into S. This

is obvious from the de�nition of a rapidly decreasing test function in each case

except for the last, which we prove forR 1 (the extension toR n is straightforward).

We wish to show that if � 2 S then its L1 Fourier transform �̂ 2 S; i.e., that

 ̂ (t) = tN �̂ (k)(t) is bounded for any given integersN; k > 0. Now,  ̂ is the (L1)

Fourier transform [49] of

 (x) =

 
1

2�j

! N dN

dxN
(xk � (x))

=

 
1

2�j

! N kX

i =0

 
N
i

!
k!

(k � i )!
xk� i � (N � i )(x):

Each term in this sum is a rapidly decreasing test function and thus so is  (x).

Thus  (x) is absolutely integrable and

j ̂ (t)j =
�
�
�
�

Z 1

�1
 (x)e� j 2�xt dx

�
�
�
� �

Z 1

�1
j (x)jdx < 1 :

2
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De�nition A.2 A linear functional u : S ! R is called atempered generalized

function or tempered distribution if there exist a real numberC � 0 and a

nonnegative integerN such that

jhu; � ij � C
X

j � j� N

supj� � j

for all � 2 S. The generalized function is then said to be of orderN . The vector

space of tempered generalized functions is denoted byS0.

Inequalities of this sort are known assemi-norm estimates[50]. The use of the

inner product notation hu; � i to denote the operation of the functionalu on the test

function � is conventional. We will now show how this operation in fact corresponds

to the formation of an inner product in the usual sense in manycases of interest.

The generalized functions appearing in this thesis are all of order N = 0. An

example of such is the so-called Dirac delta function,� , de�ned by

h�; � i = � (0):

This is a special case of the general result that any �nite Borel measure� determines

a generalized function of order zero by

h�; � i =
Z

�d�:

(The converse is also true; see [50].) Another example is thetempered distribution

associated with an ordinary locally integrable function,f , of polynomial growth,

which is determined by

hu; � i =
Z 1

�1
f �dx:

Since � can be chosen with support on any given interval, this determination is

unique up to an equivalence class of functions equal almost everywhere (i.e., di�er-

ing only on a set of measure zero).
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Theorem A.2 The following operations on tempered distributionsu; v 2 S 0 pro-

duce tempered distributions:

(i) hu + v; � i = hu; � i + hv; � i ;

(ii) hcu; � i = chu; � i ; c 2 C;

(iii) hu� ; � i = ( � 1)j � jhu; � � i ; for multi-indices � ;

(iv) hA � u; � i =
1

j detAj

D
u; � (A � 1x)

E
; for a real non-singularn � n matrix A;

(v) hu(x � a); � i = hu; � (x + a)i ; a 2 R n ;

(vi) hgu; � i = hu; g� i ; g 2 C1 (R n) and of polynomial growth.

Furthermore, whenu and v correspond to ordinary functions, the results of these

operations are consistent with those for ordinary functions.

The proofs are straightforward [50, 51]. As an example we prove Part (v). u is a

tempered distribution and� (x + a) 2 S, sou(x � a) has a �nite semi-norm estimate

and is a tempered distribution. Ifu corresponds to an ordinary functionf then

hu(x � a); � i =
Z

f (x)� (x + a)dx =
Z

f (x � a)� (x)dx

which is the de�nition of the generalized function associated with f (x � a).

Writing u(x � a) is an abuse of notation, although the meaning should be clear.

Some authors also denote the composition of a distribution with a coordinate trans-

formation by u(Ax) instead of A � u.
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As an application of Theorem A.2, consider the generalized function associated

with the Heaviside step function

H (x) =

8
><

>:

1; x > 0;

0; otherwise.

To compute its derivative we write

D
H (1) ; �

E
= �

D
H; � (1)

E
= �

Z 1

0
� (1) (x)dx = � (0) = h�; � i ; 8� 2 S:

Thus

H (1) = �:

Arbitrary products of distributions are not de�ned. Theorem A.2(vi) shows how

one can straightforwardly de�ne a product when one distribution corresponds to

an in�nitely di�erentiable function of polynomial growth. The problem is that S

is not stable under products with arbitrary functions, although some special cases

can be handled. Particularly useful is the following [52]:

De�nition A.3 If g is a continuous function in some neighbourhood of the origin,

then

g� = g(0)�:

A product of generalized functions which is always well-de�ned is the so-called

tensor product of two distributions in distinct spaces:

Theorem A.3 Suppose thatu 2 S 0(R n ) and v 2 S 0(R m ). Then there is a unique

element ofS0(R m+ n ) called thetensor product of u and v, written u 
 v, such that

hu 
 v; � i = hu; � ihv;  i ; � 2 S(R m );  2 S(R n ):
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For a proof, see [50]. We will freely abuse notation and writedown such tensor

products as

� (x; y) = � (x)� (y):

Partial derivatives are de�ned in the obvious fashion. The tensor product of count-

able distributions is de�nable in the same manner.

We now introduce the Fourier transform of a tempered generalized function.

De�nition A.4 The (forward) Fourier transform û and inverse Fourier transform

�u of a tempered distribution are de�ned by

ĥu; � i =
D
u; �̂

E

h�u; � i =
D
u; ��

E
;

where �̂ and �� are the ordinary (L1) forward and inverse Fourier transforms, re-

spectively, of test functions� 2 S.

Note that û and �u are tempered distributions sinceS is stable under Fourier trans-

forms.

The following identities hold.

Theorem A.4 Let u, v and the constants be the same as in Theorem A.2 and let

A denote the transpose ofA. Then

(i) û(x) = �u(� x);

(ii) [u + v]̂ = û + v̂;

(iii) [cu]̂ = cû;
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(iv) [u� ]̂ = ( j 2� ) j � jx � û; wherex � 4
=

Q n
j =1 x � j

j ;

(v) [x � u]̂ =
�

j
2�

� j � j

û� ;

(vi) [u(x � a)]̂ = e� j 2�a �x û(x);

(vii) [ej 2�a �xu(x)]̂ = û(x � a);

(viii) [A � u]̂ =
1

j detAj
A � 1�

û;

(ix) u �̂ = u�̂ = u:

Furthermore, whereu and v correspond to ordinary functions, the results of these

operations are consistent with those for ordinary functions.

Again the proofs are not di�cult (see, for instance, [51]). As an example we will

prove Part (vi):

[u(x � a)]̂ =
D
u(x � a); �̂ (x)

E

=
�

u(x � a);
Z

� (t)e� j 2�x �tdt
�

=
�

u;
Z

� (t)e� j 2� (x+ a)�tdt
�

=
�

u;
Z

[� (t)e� j 2�a �t ]e� j 2�x �tdt
�

=
D
û; � (x)e� j 2�a �x

E

=
D
ûe� j 2�a �x ; � (x)

E
:

Note that Part (i) of the theorem can be used to rewrite each ofthe subsequent

parts in terms of inverse Fourier transforms. Furthermore we observe that the

Fourier transform of a distribution is unique since the Fourier transform operation

has an inverse; i.e., the Fourier transform is a bijective mapping betweenS0 and S0.



APPENDIX A. GENERALIZED FUNCTIONS 171

As a simple example, consider the Fourier transform of the Dirac delta:

D
�̂; �

E
=

D
�; �̂

E
= �̂ (0) = h1; � i ; 8� 2 S:

Thus �̂ = 1.

Now let us consider a more complicated example: the Fourier transform of the

tempered generalized function

W� (x) =
1X

k= �1

� (x � k�) :

We should �rst check that this is in fact a tempered distribution, for which we

require the following:

De�nition A.5 Consider a sequencef ung � S 0 and u 2 S 0. We say that un

converges to u, written un ! u, if

lim
n!1

hun ; � i = hu; � i

for each � 2 S.

We can show that the partial sums
* nX

k= � n

� (x � k�) ; � (x)

+

=
nX

k= � n

� (k�)

converge asn ! 1 and that the limit is in S0. In fact, this is trivial since � (x)

decreases faster than any power ofjxj. (How we index the summands is also clearly

irrelevant.) Now we can state the following important theorem [51, 53]:

Theorem A.5 If

W� (x) =
1X

k= �1

� (x � k�)
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then

Ŵ� =
1

j� j
W 1

�

Proof :[Outline.] W� is a periodic generalized function; i.e.,W� (x + �) = W� (x).

Using Theorem A.4(vi) we observe that

(e� j 2� � t � 1)Ŵ� (t) = 0 :

(e� j 2� � t � 1) vanishes att = k=�, 8k 2 Z. We consider only the origin,k = 0,

since the situation for other values ofk is similar. (e� j 2� � t � 1) is O(t) at the origin

and it can be shown [51] thattu(t) = 0 if and only if u = C� for someC 2 R.

Thus

Ŵ� =
1X

k= �1

ck �

 

t �
k
�

!

:

Now W� is itself a sum of delta functions, so by the same brand of reasoning Ŵ�

is periodic with period 1=�; i.e., we can write

(e� j 2�x= � � 1)W� (x) = 0

which implies that Ŵ� (t + 1
� ) = Ŵ� (t). Thus

Ŵ� (t) = C
1X

k= �1

�

 

t �
k
�

!

= CW� (� 2t)

for some real constantC. Then Theorems A.4(viii) and (ix) give

W� = W� �̂ =
C2

� 2
W�

whenceC2 = 1=� 2. Finally we observe that� (x) = e� �x 2
= �̂ (x) 2 S is everywhere

greater than zero, soC = 1=j� j.

2
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De�nition A.6 When û corresponds to an ordinary function continuous in some

neighbourhood of the origin, we may de�ne thede�nite integral of u by

Z 1

�1
u(x)dx = û(0):

Thus we obtain, for instance, the intuitively satisfying results that
R

� (x)dx = 1

but that
R

W� (x)dx is unde�ned.

A popular operation on generalized functions which requires some care is that

of convolution. We introduce the notion of a compactly supported generalized

function:

De�nition A.7 A distribution u is said to havecompact support support(u) �

[a; b] if hu; � i = 0 for all test functions whose support lies outside[a; b]. The vector

space of compactly supported distributions is denoted byE0.

The following elegant and useful theorem may be found in [50]:

Theorem A.6 Suppose thatu 2 S 0(R n ) and v 2 E0(R n ). Then

u ? v = hv(y); hu(x); � (x + y)ii

= hu(x); hv(y); � (x + y)ii ; � 2 S;

is an element ofS0(R n), called theconvolution of u with v, and furthermore

(u ? v)̂ = ûv̂:

Sincev 2 E0(R n) it turns out that v̂ corresponds to an ordinary function of polyno-

mial growth in C1 (R n ). Thus the product ûv̂ is well-de�ned by Theorem A.2(vi).



APPENDIX A. GENERALIZED FUNCTIONS 174

Unfortunately this result is not quite as general as we mightlike it to be. That

one of the distributions must be compactly supported is a severe restriction, and

one which is not always warranted. Of particular interest are convolutions involving

W� . We will prove some useful results concerning such convolutions, but �rst we

require the following notions from the Fourier theory of ordinary functions.

De�nition A.8 For a given function f we say thatf 2 L1(R) if
Z 1

�1
jf (x)jdx < 1 :

De�nition A.9 A function f is said to havebounded variation on R if
nX

i =1

jf (x i ) � f (x i � 1)j

is bounded above for all ordered �nite sequencesx0 < x 1 < : : : < x n in R.

Any function displaying only a �nite number of �nite discont inuities in any closed

interval will have bounded variation.

De�nition A.10 A function f is said to benormalized if for each x 2 R

f (x) =
f (x+ ) + f (x � )

2
:

Theorem A.7 (Poisson's Summation Formula) Supposef 2 L1(R), is of bounded

variation and normalized. Then
1X

k= �1

f (x + k) =
1X

k= �1

f̂ (k)e� j 2�kx :

In particular,
1X

k= �1

f (k) =
1X

k= �1

f̂ (k):
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Proof : Sincef 2 L1(R),

1X

k= �1

Z 1

0
jf (x + k)jdx =

Z 1

�1
jf (x)jdx < 1 :

Thus the sum
1X

k= �1

f (x + k)

converges absolutely almost everywhere and de�nes an absolutely integrable func-

tion g(x) on [0; 1]. g(x) is normalized and of bounded variation so that it can be

expanded in a Fourier series [54]:

1X

k= �1

f (x + k) =
1X

k= �1

f̂ (k)e� j 2�kx :

In particular, this can be evaluated atx = 0.

2

Poisson's summation formula easily generalizes using Theorem A.4(viii) to give

�
1X

k= �1

f (x + k�) =
1X

k= �1

f̂

 
k
�

!

e� j 2�kx= � :

The formula may also be turned around to give the following:

Lemma A.1 Supposef 2 L1(R) is of bounded variation and normalized. Then

1X

k= �1

f (k)e� j 2�kx =
1X

k= �1

f̂ (x � k):

Proof : f (z)e� j 2�zx is in L1(R), of bounded variation and normalized for any given

x 2 R.

2
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Theorem A.8 If f 2 L1(R) is of bounded variation and normalized then

f̂ ? W 1

is a tempered distribution.

Proof : By De�nition A.5 we need only show that the sequence of partial sums

f̂ (t) ?
nX

k= � n

� (t � k) =
nX

k= � n

f̂ (t � k)

converges asn ! 1 and that the limit is a tempered distribution. The function f

satis�es Lemma A.1 and thus

1X

k= �1

f (k)e� j 2�kx =
1X

k= �1

f̂ (x � k):

Thus the sequence of partial sums converges for almost everywhere, thereby de�ning

a locally integrable periodic functiong = f̂ ? W 1 which, in turn, de�nes a tempered

distribution.

2

Note that the Lemma provides an alternative means of calculating the convolu-

tion.

Finally we can introduce the following novel de�nition of a product of general-

ized functions:

De�nition A.11 If f 2 L1(R) is of bounded variation and normalized we de�ne

the product

fW 1 = [ f̂ ? W 1]�:
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This de�nition has the trivial generalization

fW � =
1
�

[f̂ ? W 1
�

]�:

Note that f need not be continuous at multiples of �.

As an example, consider Eq. (3.2).f (w0) = �� � (w0 � w) is absolutely in-

tegrable, normalized and of bounded variation so that its product with W� is

well-de�ned in the above sense. Its Fourier transform is

f̂ (uw0) = �
1X

k= �1

sinc (uw0)e� j 2�wu w 0:

Applying Lemma A.1,

[f̂ ? W 1
�

](uw0) =
1X

k= �1

�� � (k� � w)e� j 2� � kuw 0

=

8
><

>:

1
2

�
e� j 2� � nu w 0 + e� j 2� �( n+1) uw 0

�
; w =

2n + 1
2

� ; n 2 Z;

e� j 2� � bw
� + 1

2 c; otherwise,

so that

[fW � ](w0) =

8
>><

>>:

1
2

[� (w0 � n�) + � (w0 � (n + 1)�)] ; w =
2n + 1

2
� ; n 2 Z;

�
�

w0� �
� w

�
+

1
2

��

; otherwise,

which is the expected output cpdf for a stochastic quantizer.

Eqs. (3.4) and (3.5) can be handled in the same fashion since

f̂ (uw0) = sinc (uw0)Pw;�;x (uw0 + uw ; u� ; ux)

is the Fourier transform of

f (w0) = � � (w0) ? pw;�;x (w0; �; x )ej 2�u w w0

= � � (w0 � � � x)p� (�; x )ej 2�u w (x+ � )

which is an L1 function of w0. Thus the convolution of Eq. (3.5) and the product

of Eq. (3.4) are well-de�ned by Theorem A.8.



Appendix B

Time Averages and NSD

Quantizers

It was shown in Section 4.4 that proper non-subtractive dither can render any

desired moments of the total error independent of the systeminput. Furthermore,

it can render errors which are separated in time uncorrelated, so that the spectrum

of the total error is white.

It has been correctly observed by Lagadec [41, 42] that moments and joint

moments are quantities which cannot be absolutely determined by empirical means.

In real time, they must be estimated from a �nite series of signal values. It is not

immediately obvious that such estimation will proceed similarly for, on the one

hand, the total error signal from a dithered quantization operation, and on the other

hand, an independent reference random process. It is the aimof this appendix to

elucidate the question of practical estimation of statistical moments, and to show

that for purposes of such estimation no signi�cant distinction exists between iid

178
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channel

input

dither

x +

+

, n

w = x + n

quantizer output
QS y = x + e

Figure B.1: Schematic of a non-subtractively dithered quantizing system.

noise and the total error produced in a properly dithered quantization operation.

In particular, we will allay concerns raised in [41] regarding the convergence of

variance estimates in dithered quantizing systems and demonstrate that with regard

to moment estimation there is no practical distinction between the total error of a

properly dithered quantizing system and an independent iidreference process. Our

discussion will be restricted to NSD systems since in SD systems the total error is

preciselyan iid random noise. These investigations have been previously presented

by the author in [24].

B.1 Total Error Variance: The Estimation Ques-

tion

For reference, Fig. B.1 indicates the signals present within an NSD system. Say

that, given access to samples of the total error signal," , one wishes to calculate its
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variance. It is reasonable to hope that a rough estimate of this quantity might be

obtained by squaring a set of the sample values (say,N of them) and averaging the

results:

variance�
1
N

N � 1X

i =0

"2(i ): (B.1)

One would intuitively expect the accuracy of the result to bebetter for large N

than for small.

Let us proceed with this approach for a system using RPDF dither with a static

(dc) system input signal of the form:

x(i ) = a� ;

where � denotes one LSB of the system (after quantization) and where a is a

constant such that � 1=2 � a < +1=2. We will estimate the total error variance

and see how the value we obtain changes withN . Fig. B.2 shows results for twenty

trials using di�erent, randomly chosen values ofa. The curves were produced by

evaluating Eq. (B.1) at values ofN equal to successive powers of two. For small

values ofN , the estimates exhibit a broad range of values which sometimes 
uctuate

wildly as N increases. ForN > 8 the 
uctuations die down and all of the estimates

lie roughly in the range from 0 to � 2=4, but they show no sign of converging to a

single value. (We will see that the reason for this is that thetotal error variance for

an RPDF dithered quantizing system depends upon the value ofthe static system

input value a�.)

Now we will try the same experiment with 2RPDF (i.e., TPDF) dither (which

is the sort of dither recommended for use in many applications including audio [23,

11, 16, 18]). Fig B.3 shows the results for twenty trials. This time, after initial


uctuations, the variance estimates appear to converge to avalue of roughly � 2=4.
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Figure B.2: Total error variance estimates as a function of the number of
samples averaged in an RPDF dithered quantizing system. Twenty trials are
shown for a system with randomly chosen static input signalsof level between
� 0:5 and +0 :5 LSB.
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Figure B.3: Total error variance estimates as a function of the number of
samples averaged in an 2RPDF dithered quantizing system. Twenty trials
are shown for a system with randomly chosen static input signals of level
between � 0:5 and +0 :5 LSB.
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Figure B.4: Periodic bipolar ramp signal (� = 0 :2).

The observed results can vary with the choice of system inputsignal. For

instance, let us try the above experiments with a system input of the form:

x(i ) = �
� i

L
+ � �

� i
L

+ � +
1
2

��

; (B.2)

where the \
oor" operator b c returns the greatest integer less than or equal to its

argument. The above function is a repeated bipolar ramp of period L samples,

amplitude 1 LSB, and starting at a value� , as illustrated in Fig. B.4 (a similar

test function was used in [41]). Fig. B.5 shows results for twenty trials using an

input ramp signal of periodL = 400 samples starting at randomly chosen values of

� lying between� 1=2 and +1=2. In obtaining this �gure RPDF dither was used,

while Fig. B.6 shows results of the same experiment using 2RPDF dither. With

this choice of input signal, both sets of estimates appear toconverge to particular

values (of roughly � 2=6 and � 2=4 respectively), but the 2RPDF curves do so more

rapidly with increasing N .
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Figure B.5: Total error variance estimates as a function of the number of
samples averaged in an RPDF dithered quantizing system. Twenty trials are
shown for a system with a repeated ramp input signal with period L = 400
samples and randomly chosen starting values� between� 0:5 and +0 :5 LSB.
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Figure B.6: Total error variance estimates as a function of the number of
samples averaged in an 2RPDF dithered quantizing system. Twenty trials
are shown for a system with a repeated ramp input signal with period L = 400
samples and randomly chosen starting values� .
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Figure B.7: Total error variance estimates as a function of the number of
samples averaged for an iid 3RPDF random noise process. Twenty trials are
shown.

It is of interest to compare these curves to similar ones for arandom noise pro-

cess which is not associated with quantization, and whose samples are statistically

independent of one another. Fig. B.7 shows the results of twenty trials at estimating

the variance of such a process with a piecewise-parabolic pdf (3RPDF or PPDF). 1

The curves appear to converge to a value of roughly �2=4 and the convergence is

qualitatively similar to that shown in Fig. B.6.

What should we conclude from these results? Obviously, estimates of the to-

tal error variance in dithered systems converge di�erentlygiven di�erent dither or

input signals. In particular, Figs. B.2 and B.5 di�er markedly in appearance, al-

though in each case RPDF dither was used. Figs. B.3 and B.6 aremore comparable

1The reason for this choice of pdf will be clari�ed in Section B.4.3, although the qualitative

appearance of Fig. B.7 would be similar for any independent stationary random process regardless

of its distribution.



APPENDIX B. TIME AVERAGES AND NSD QUANTIZERS 185

in their broad features, but how comparable are they to the curves for the inde-

pendent noise process of Fig. B.7? What are the audible consequences, if any, of

the di�erences? Appropriate dither is supposed to eliminate audible relationships

between the system input and the total error. In view of the results obtained above,

can we say that the dither is doing its job properly?

The remainder of this appendix attempts to demonstrate that, subject to the

choice of an appropriate dither signal, estimates of statistical quantities such as the

total error variance converge in a fashion which is not signi�cantly di�erent from

the convergence of such estimates for an independent stationary random noise,

hence answering the estimation questions raised by Lagadecin [41]. On the other

hand, for instance, the use of RPDF dither does not render thetotal error variance

independent of the system input, so that estimates of this quantity are input de-

pendent. This is observed in Fig. B.2 and in [41], which investigated only RPDF

dithered systems [42]. 2RPDF dither, on the other hand, eliminates all suchnoise

modulation (i.e., 
uctuations in the error variance), yielding a constant variance of

� 2=4. Under such conditions, estimates of the total error variance always converge

to this value in a well-behaved fashion, as observed, for example, in Fig. B.3.

B.2 Time Averages

In addition to ensemble averagesrepresented by expectation values, we can de�ne,

for any stochastic process,time averagesof the form

hf i
4
= lim

N !1

1
N

N � 1X

i =0

f (x i ); (B.3)
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where we have assumed a discrete time variablet � 0. (Recall that x i = x(�; t i ),

a random variable; see Section 2.1.) Althoughhf i is not time dependent, it is still

dependent on� and is hence, in general, a random variable.

For many important stochastic processes, however,hf i turns out (in the limit)

to be independent of� so that it is just a number. In particular, processes for which

E[f ](t) = hf i

is a numerical constant, independent of� and t, for any function f of the random

variable, are said to beergodic. The precise conditions for ergodicity are discussed

in, for instance, [32]. The essence of one su�cient condition is that

� each sample functionx(� j ; t) displays, somewhere in the interval 0� t < 1 ,

all the same statistical behaviour as every other sample function (a condition

which is assumed to be satis�ed in practice), and

� the stochastic processx is stationary in the strict sense.

If the relation E[f ](t) = hf i holds only for some particularf , then the stochastic

process is said to beergodic in f . The conditions for this to be true depend on the

choice off and will generally be weaker than the conditions for generalergodicity.

Such conditions ensure not only that the mean of �nite (N -term) time averages,

considered as random variables, tends to the required expectation value asN ! 1 ,

but also that their variance tends to zero.

We will sometimes �nd it useful to denote thek-th moment of a stochastic

process which is ergodic inxk as mk . Hence, for processes whosek-th moment is

constant with respect to time, we will write that

mk = E[xk ] = hxk i :
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B.3 Estimators

In monitoring the statistical properties of a stochastic process, no real-time system

(e.g., the human ear) can rely on either ensemble or in�nite time averages. The

pdf of the process at a given time is not usually knowna priori , so expectation

values cannot be computed, and an in�nitude of samples is notavailable for time

averaging (neither would one want to wait forever to get the result). In practice,

statistical quantities such as moments must be approximated using some practical

time-limited algorithm. For instance, we might reasonablyhope to arrive at an

approximate value, m̂k , of the k-th moment of the stochastic processx by using

Eq. (B.3) truncated at the N -th term to give the following formula:

m̂k
4
=

1
N

N � 1X

i =0

xk
i : (B.4)

We say that the rule assigning a value to ^mk is an estimator for mk , and that m̂k

is an estimate thereof.

Eq. (B.4) represents Eq. (B.1) generalized to estimate an arbitrary ( k-th) mo-

ment and recast in the parlance of random variables. That is,the terms in Eq. (B.1)

were simple numbers, whereas those in Eq. (B.4) are random variables whose sta-

tistical properties are described by associated pdf's. It thus captures the properties

of not just a single trial estimation, but of such estimations in general.

Observe that Eq. (B.4)assumesthat the moment to be estimated,E[xk ](t), is at

least roughly constant for 0� i � N � 1, otherwise the estimate will not represent

a meaningful quantity. Also note that, due to the �nite number of terms in the

summation, the estimatem̂k is itself a random variable even if the stochastic process

in question is ergodic inmk (i.e., in practice the estimate depends on the sample

function obtained). The statistical behaviour of this random variable is obviously
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of considerable practical interest, and depends on the choice of estimator.

One desirable property in an estimator is that it yield, on average, the correct

result. In particular, it would be nice if

E [m̂k ] = mk :

Such an estimator is said to beunbiased. We can easily see whether or not the

estimator Eq. (B.4) has this property by using the linearity of the expectation

value operator:

E[m̂k ] = E

"
1
N

N � 1X

i =0

xk
i

#

=
1
N

N � 1X

i =0

E
h
xk

i

i
: (B.5)

If E [xk
i ] is not a constant for 0 � i � N � 1 then Eq. (B.5) cannot be further

simpli�ed. On the other hand, if the process is ergodic inmk (or if, at least, the

mk is constant over the time interval of the estimation), then

E[m̂k ] = E
h
xk

i

i

= mk (B.6)

so that m̂k is unbiased.

An estimator may be unbiased, but yield wildly 
uctuating results with succes-

sive trials. A common measure of the consistency of an estimator is its mean-square

error (MSE):

MSE[m̂k ]
4
= E

h
(m̂k � mk)2

i
:

Note that this is only a meaningful quantity if the process isergodic inmk .
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What is the MSE of m̂k as de�ned by Eq. (B.4)? Assuming thatmk = E[xk
i ] is

a constant for 0� i � N � 1, then

MSE[m̂k ] = E

2

4

 
1
N

N � 1X

i =0

xk
i � mk

! 23

5

=
1

N 2

N � 1X

i;j =0

E[xk
i xk

j ] �
2mk

N

N � 1X

i =0

E[xk
i ] + m2

k

=
1

N 2

N � 1X

i;j =0

E[xk
i xk

j ] � m2
k : (B.7)

Now xk
i and xk

j (i 6= j ) are said to beuncorrelated if

E [xk
i xk

j ] = E[xk
i ]E [xk

j ]:

If this is the case fori and j between 0 andN � 1 where i 6= j , then Eq. (B.7)

reduces to

MSE[m̂k ] =
1
N

"
1
N

N � 1X

i =0

E[x2k
i ] � m2

k

#

: (B.8)

Finally, if

E [x2k
i ] = m2k

is a numerical constant independent of time for 0� i � N � 1, then

MSE[m̂k ] =
1
N

h
m2k � m2

k

i
: (B.9)

Eqs. (B.7), (B.8), and (B.9) are of crucial importance for the treatment of

moment estimation in dithered systems which is to follow. A noteworthy feature of

each is the nature of its dependence uponN , which a�ects the relationship between

the accuracy of an estimate and the number of data points usedto produce it.

We will refer to the function MSE[m̂k ](N ) as the convergence curvefor m̂k . In

particular, Eq. (B.9) implies that, for any process which isstrict-sense stationary,
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the convergence curve decreases as 1=N with increasingN . It is to this convergence

behaviour that we must compare the convergence of moment estimates in dithered

quantizing systems.

Let us then proceed to apply an estimator in the form of Eq. (B.4) to the total

error process of a dithered quantizing system. We will seek to determine whether

or not the resultant estimate converges and, if so, to what and how rapidly, for

systems using di�erent types of dither. Any conclusions will be compared to an

independent stationary stochastic process.

B.4 Moment Estimation In Dithered Systems

Each signal present in a quantizing system can be consideredas a stochastic process,

but we will limit our discussion primarily to the statistical properties of � and ".

(We will henceforth drop from" i the subscript i , associating it with time t i , unless

it is speci�cally required.)

It has been shown (see Eq. (4.48)) that the conditional pdf of" is

p" jx("; x ) = [�� � ? p� ](" )W� (" + x); (B.10)

where p� is the pdf of the dither. Note that this function is periodic with period

�. Eq. (B.10) shows that the conditional pdf of " is functionally dependent onx

regardless of the choice ofp� , so that as x varies with time so do the statistical

properties of" . This is a re
ection of the fact that, in an NSD system," can never

be made a stationary random process independent of the system input.
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We will �nd opportunity to use the following input-averaged total error pdf:

�p" (" ) =
1
�

Z � =2

� � =2
p" jx("; x )dx

= [�� � ? p� ](" ):

In the most general case, all of the moments of" will be time varying, so that

estimates of them will be at best approximate and at worst meaningless. Theo-

rem 4.7 indicates however, that using iidnRPDF non-subtractive dither renders

the �rst n moments of the total error independent of the system input, and results,

for n � 2, in a total error power of (n + 1)� 2=12. The moments of the total error

are then given, for 1� k � n, by Eq. (4.31). Of particular usefulness are the

expressions fork = 1 and k = 2:

E[" ] = E[� ] (B.11)

E["2] = E[� 2] +
� 2

12
: (B.12)

Furthermore, Eq. (4.35) shows that such dither will render

E[" k
i " `

j ] = E[" k
i ]E [" `

j ]

(i.e., it will render " k
i and " `

j uncorrelated) for positive integersk; ` � n and i 6= j .

These properties will prove su�cient to make several important statements con-

cerning the estimation of statistical quantities in systems using practical dither

signals. We will thus proceed to consider systems using three common types of

dither: null dither (i.e., undithered systems with p� (� ) = � (� )), RPDF dither,

and 2RPDF (i.e., TPDF) dither. We see from Theorem 4.7 that null dither will

not render any moments of the total error independent of the system input (since

P� (u) = 1). RPDF dither, however, will render (only) the �rst mome nt indepen-

dent, and 2RPDF dither will render (only) the �rst and secondmoments indepen-

dent.
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B.4.1 Undithered Systems

We wish to compare moment estimation in undithered systems to moment esti-

mation for some stationary random process. The question naturally arises as to

what pdf is appropriate for this reference process. We argue that the appropriate

reference process isuniformly distributed; that is, it has a pdf pref0
of the form

pref0
(w; t)

4
= � � (w):

Indeed, the Classical Model of Quantization assumes that the total error in an

undithered system has precisely this pdf. Furthermore, if the conditional pdf of the

total error in such a system is averaged over all possible input levels, a rectangular

function � � is the result.

The moments of the above reference process are:

E[" ] = 0

E["2] =
� 2

12

E[" k ] =

8
>>><

>>>:

1
k + 1

� �
2

� k

; k even,

0; k odd.

These moments are all time invariant so that for such a reference process we can

use Eq. (B.9) to write that

MSE[m̂k ] =
1
N

h
m2k � m2

k

i
:

How do these results compare with those for an undithered quantizing system?

In such a system, the total error is a deterministic functionof the input. Hence, for

an arbitrary time varying input all moments of the error are time dependent and

the MSE of estimates thereof will be ill de�ned.
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On the other hand, for static system inputs, the error is a constant numerical

value, " , so that

E[" k
i ] = " k :

Thus, all estimates of the error will convergeimmediately (i.e., MSE[m̂k ](N ) = 0)

for any static input. This is little consolation for the fact that the mean error is

generally non-zero. The reader should by now be well aware that that undithered

quantizing systems produce distortion of signals passing through them. Obviously,

the total error in an undithered system behaves very little like an independent

stationary random process with respect to moment estimation, but this is not sur-

prising.

B.4.2 Rectangular-pdf Dithered Systems

We argue that the appropriate reference process to which an RPDF dithered system

should be compared has a triangular pdf of 2 LSB peak-to-peakamplitude (i.e.,

2RPDF). Such a process corresponds to one which would be produced by summing

the notional statistically independent uniformly distributed processes associated

with the dither and the idealized quantization error of the CMQ. The relevant pdf

is

pref1
(w; t) = [� � ? � � ](w)

=

8
>>><

>>>:

1
�

 

1 �
jwj
�

!

; 0 � j wj < �,

0; otherwise,
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with associated moments

E[" ] = 0 (B.13)

E["2] =
� 2

6
(B.14)

E[" k ] =

8
>>><

>>>:

� k

(k + 1)( k + 2)
; k even,

0; k odd.

(B.15)

We must treat the mean error in an RPDF dithered system di�erently from the

higher moments, since it is a constant,

m1 = 0;

according to Theorem 4.7 and Eq. (B.11). Also, in such a system we have

E[" i " j ] = E[" i ]E [" j ]

for i 6= j , so that, according to Eq. (B.8), we can write

MSE[m̂1] =
1
N

"
1
N

N � 1X

i =0

E["2
i ]

#

: (B.16)

Unfortunately, E["2
i ] is not constant for time-varying inputs. While this means that

the MSE[m̂1] does not in general decrease as 1=N, we can at least compute bounds

for it by using Eq. (B.10) to �nd the variance of " as a function ofx:

E["2jx] =
Z 1

�1
"2p" jx("; x )d"

=

8
>><

>>:

x(� x + �) ; 0 � x < � ;

E["2jx � `�] ; `� � x < (` + 1)� :
(B.17)

That is, for 0 � x < �, E["2jx] is a section of a parabola, which is periodically

repeated outside this interval as shown in Fig. B.8. The maximum and mini-
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Figure B.8: E ["2jx] as a function of x for an RPDF dithered quantizing
system.

mum values of this function are � 2=4 and 0, respectively. We may conclude from

Eq. (B.16) that MSE[m̂1] always lies between the curves

f min1
(N ) = 0 and f max1

(N ) =
� 2

4N
:

The convergence curve MSE[ ^m1](N ) for the reference process is given by Eqs. (B.13),

(B.14) and (B.9) as

f ref1
=

� 2

6N
:

It is straightforward to calculate from Eq. (B.17) that the average value of

E["2jx] in an RPDF dithered system is � 2=6. Substituting this value into Eq. (B.16)

for E["2
i ] yields the averageconvergence curve, which is identical tof ref1

(N ).

Fig. B.9 shows a family of curves generated in a computer experiment which

tried to estimate the mean total error of an RPDF dithered quantizing system

with a static system input of 0.5 LSB. Each curve correspondsto a separate trial
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Figure B.9: Estimate of E [" ] for an RPDF dithered quantizing system with
a 0.5 LSB system input, shown as a function of the number of samples used
in the estimate.

0.0001

0.0010

0.0100

0.1000

1.0000

1 2 4 8 16 32 64 128 256 512

M
S

E
 in

 E
st

im
at

e 
[L

S
B

^2
]

Number of Samples, N

0.1 LSB dc
0.2 LSB dc
0.3 LSB dc
0.4 LSB dc
0.5 LSB dc

UPPER BOUND
REFERENCE

Figure B.10: MSE[m̂1](N ) for an RPDF dithered quantizing system with
static system inputs, compared with the theoretical upper bound and refer-
ence convergence curves,f max1

and f ref1
. Data averaged over 1000 trials.
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using the estimator discussed above, and represents the estimate m̂1 as a function

of the number N of samples use to compute it. At any givenN , each curve can

assume a di�erent value, since the estimate is a random variable, but this would be

true even if we were trying to estimate the mean of the reference process. A more

meaningful curve to examine is themean squareof a large number of such curves,

which tends to the convergence curve MSE[ ^m1](N ) (provided that the latter is well-

de�ned). This curve is plotted in Fig. B.10 for a variety of static system inputs.

One thousand trials were averaged to yield the data. Note that since the data for

a static 0 LSB system input resides at zero it does not appear in the �gure. Also

shown for comparison aref max1
and f ref1

. Note that for all of the given system

inputs, the empirical convergence curves lie on or below thetheoretical maximum.

For non-static system input signals, MSE[ ^m1](N ) will not decrease like 1=N, but

will always be bounded byf max1
and f min1

. This is demonstrated in Fig. B.11

for a repeated ramp input (see Eq. (B.2)) withL = 100 and � = 0:0. We conclude

that while we cannot predict the precise functional form of MSE[m̂1] for this kind

of system, it is bounded from above by a curve which approaches zero at a rate of

1=N.

Unfortunately, we cannot make similar statements about MSE[m̂k ] for k > 1.

For an RPDF dithered system,mk is not independent of the system input fork > 1,

so that given a time-varying input signal these moments willalso vary with time.

Hence, any estimates of such moments will be meaningless. For 
uctuating inputs

which, in the long run, distribute themselves uniformly over an integral number

of quantizing steps, estimates ofmk will tend to converge to the mean value of

E[" k jx]. This is precisely what was observed in Fig. B.5 (similar behaviour was

observed in [41]), where the variance estimates slowly converged to a value of �2=6.



APPENDIX B. TIME AVERAGES AND NSD QUANTIZERS 198

0.0001

0.0010

0.0100

0.1000

1.0000

1 2 4 8 16 32 64 128 256 512

M
S

E
 in

 E
st

im
at

e 
[L

S
B

^2
]

Number of Samples, N

RAMP
UPPER BOUND

REFERENCE

Figure B.11: MSE[m̂1](N ) for an RPDF dithered quantizing system with a
repeated ramp system input signal (L = 200 and � = 0 :0). Data averaged
over 1000 trials.

Hence this behaviour is a consequence of noise modulation, and is to be expected.

For static system inputs, the variance is constant but dependent on the input level,

so that estimates thereof will converge but to a di�erent value for di�erent inputs.

This is observed in Fig. B.2 where, as we noted, the estimatesdo not converge to

any unique value.

B.4.3 Triangular-pdf Dithered Systems

The appropriate reference process against which to comparethe total error of a

2RPDF dithered quantizing system corresponds to the sum of three statistically

independent, uniformly distributed random processes, so that it has a piecewise-
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parabolic pdf (3RPDF or PPDF) of the form

pref2
(w; t) = [� � ? � � ? � � ](w)

=
1

2� 3
�

8
>>>>>>>>><

>>>>>>>>>:

3� 2

2
� 2w2; 0 � j wj <

�
2

;

�

jwj �
3�
2

� 2

;
�
2

� j wj <
3�
2

;

0; otherwise,

with associated moments

E[" ] = 0

E["2] =
� 2

4

E["4] =
91� 4

560

E[" k ] =

8
>>><

>>>:

3
4

3k+2 � 1
(k + 1)( k + 2)( k + 3)

� �
2

� k

; k even,

0; k odd.

In a 2RPDF dithered system, the �rst two moments of the total error are input

independent and given by Eqs. (B.11) and (B.12) as

m1 = 0

m2 =
� 2

4
;

which are equal to the �rst two moments of the reference process. Hence, Eq. (B.9)

allows us to write that

MSE[m̂1] =
� 2

4N
;

which is precisely equal to the convergence function of the �rst moment of the

reference process and independent of the system input signal.
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Figure B.12: E ["4jx] as a function of x for a 2RPDF dithered quantizing
system.

MSE[m̂2] depends on the fourth moment of the total error, which is input de-

pendent in this kind of quantizing system, so that the best wecan do is set bounds

upon it as we did for MSE[m̂1] in Section B.4.2. Using Eq. (B.10), as before, we

�nd that

E["4jx] =
Z 1

�1
"4p" jx("; x )d"

=

8
>>><

>>>:

3x4 �
3� 2

2
x2 +

� 2

4
; 0 � x < � ;

E["4jx � `�] ; `� � x < (` + 1)� :

This function is shown in Fig. B.12. Its maximum and minimum values are � 4=4

and � 4=16, respectively. We conclude using Eq. (B.8) that MSE[ ^m2] always lies

between the curves

f min2
(N ) = 0 and f max2

(N ) =
3� 4

16N
:
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The average value ofE["4jx] is 13� 4=80, which yields an average convergence curve

identical to f ref2
:

f ref2
=

� 4

10N
:

Fig. B.13 shows a family of curves generated in a computer experiment which

tried to estimate the second moment of the total error in a 2RPDF dithered quan-

tizing system with a static null system input. Fig. B.14 shows 1000-fold averages of

the mean-square error in such curves for various static system input values. (The

data for a static 0.5 LSB system input resides at zero and hence does not appear

in the �gure.) Shown for comparison aref max2
and f ref2

.

Again, although we cannot predict the precise form of MSE[ ^m2] for this system,

we conclude that its upper bound is a curve which approaches zero as 1=N. It is

now clear why the estimates of Figs. B.3, B.6 and B.13 all converge quickly, and in

a similar fashion, to a value of �2=4, in spite of the di�erent system input signal

associated with each �gure.

Such claims cannot be made about MSE[ ^mk ] for k > 2, in which case, as for

MSE[m̂2] in an RPDF dithered system, the quantity being estimated isnot constant

for non-static system input signals. For 
uctuating inputs which, in the long run,

distribute themselves uniformly over an integral number ofquantizing steps, such

estimates ofmk will tend to converge to the mean value ofE[" k jx].

B.5 Conclusions

Let us try to relate our �ndings to the questions posed in Section B.1 and the

experimental results shown there.
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Figure B.13: Estimates of E ["2] for a 2RPDF dithered quantizing system
with a 0 LSB system input, shown as a function of the number of samples
used in the estimate.
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We have found that there exist de�nite prerequisites for successful moment

estimation in dithered quantizing systems. In particular,if a meaningful estimate

of mk is desired then it is necessary that this quantity be rendered independent of

the system input and thus constant with respect to time by using an appropriate

dither signal. It is now obvious how to interpret Fig. B.2: the variance estimates

should not be expected to converge to a unique value since in an RPDF dithered

system the total error variance depends upon the value of thestatic system input

applied. By the same token, the variance of the total error insuch a system given a

ramped input signal is not constant, so the curves of Fig. B.5ultimately converge

to a value representing the average variance of the total error during the time

interval of estimation, namely � 2=6. In both cases, the behaviour of the estimate

is profoundly a�ected by the presence of noise modulation.

On the other hand, the curves in Figs. B.3 and B.6 all convergeto a unique

value because, with 2RPDF dither, the variance of the total error is constant at

� 2=4 for all inputs. How does the convergence compare with that for a stationary

random process whose samples are statistically independent of one another? It

has been shown that the MSE of variance estimates for such a noise decreases like

1=N, while the corresponding MSE in a 2RPDF dithered system is bounded from

above by a curve which decreases like 1=N. Hence, although we cannot in general

predict the functional form of MSE[m̂2] for such systems, we can say that it goes

to zero at least as fastas the MSE of some independent random noise process.

Furthermore, we have found that estimates of the total errorvariance converge on

average as rapidly as variance estimates for a piecewise-parabolically distributed

noise of variance �2=4, and also that estimates of the mean total error converge

precisely as rapidly as estimates of the mean of such a noise. We deduce that the

input dependence of the estimation process noted in the 1RPDF dithered system
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(above and in [41]) would not have been observed had 2RPDF dither been used.

Signal moments higher than the second have not been observedto have percep-

tual signi�cance in most applications. Indeed, variationsin these moments have

proven inaudible in a wide variety of listening tests [21]. Hence, the recommended

dither for audio applications is 2RPDF [23, 11, 16, 18], since this dither is unique in

minimizing the second moment of the total error subject to the restriction that it

render both the �rst and second moments constant with respect to time regardless

of the system input (see Theorem 4.11). We have seen that for practical moment

estimation purposes the total error in a system using proper2RPDF dither displays

convergence properties which are as good as, or better than,an independent noise

signal.

All of these desirable results are contingent upon the choice of proper dither.

If 1RPDF dither (or 2RPDF dither of incorrect amplitude) is used, the desired

moments will not be constant and estimates thereof will generally be meaningless.

We conclude that dither does its job properly, but only if itsattributes are properly

chosen.



Appendix C

Derivatives of the sinc (x) Function

In this appendix we prove two technical lemmas required in Section 4.4.3.

Lemma C.1 If

f (x) =
sin(x)

x

then for n 2 Z; n � 0,

f (n)(x) =
nX

i =0

n!
(n � i )!

sin
�
x + ( n + i ) �

2

�

x i +1
:

Proof : We will use induction. We observe that the formula holds forn = 0 and

suppose that it holds forn = m with the object of proving that it then holds for

n = m + 1. We also observe that

d
d�

sin(� ) = sin
�

� +
�
2

�

:

205
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Then, di�erentiating the expression for f (m) (x), we have

f (m+1) (x)

=
mX

i =0

m!
(m � i )!

sin
�
x + ( m + i + 1) �

2

�

x i +1
�

mX

i =0

m!
(m � i )!

(i + 1) sin
�
x + ( m + i) �

2

�

x i +2

=
sin

�
x + ( m + 1) �

2

�

x
+

mX

i =1

1
x i +1

(
m!

(m � i )!
sin

�

x + ( m + i + 1)
�
2

�

�
m!

(m � i + 1)!
i sin

�

x + ( m + i � 1)
�
2

� )

� m!(m + 1)
sin

�
x + 2m �

2

�

xm+2

=
sin

�
x + ( m + 1) �

2

�

x
+

mX

i =1

"
m!(m � i + 1) + m!i

(m � i + 1)!

#
sin

�
x + ( m + i + 1) �

2

�

x i +1

� (m + 1)!
sin

�
x + 2m �

2

�

xm+2

=
m+1X

i =0

(m + 1)!
(m + 1 � i )!

sin
�
x + ( m + 1 + i) �

2

�

x i +1
:

This proves the lemma.

2

Of course, this implies that for

sinc (x)
4
=

sin(� � x)
� � x

we have

sinc(n) (x) = ( � �) n
nX

i =0

n!
(n � i )!

sin
�
� � x + ( n + i ) �

2

�

(� � x) i +1
:

Lemma C.2 Supposem; n 2 Z, m � 1 and n � m. Then

dn

dxn

"
sin(x)

x

#m

is non-zero for x = k� , k 2 Z0.
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Proof : Let

f (x) =
sin(x)

x
:

From Lemma C.1 we have

f (n)(k� ) =
nX

i =0

n!
(n � i )!

sin
�
k� + ( n + i ) �

2

�

(k� ) i +1
:

Suppose, for purposes of contradiction, thatk 2 Z0 and that the above expression

vanishes. This implies that

nX

i =0

n!
(n � i )!

sin
�
(n + i ) �

2

�

(k� ) i +1
= 0:

The left-hand side of this expression is a polynomial in
1

k�
so that z0 =

1
k�

must

be a non-zero root of the equation

nX

i =0

n!
(n � i )!

sin
�

(n + i )
�
2

�

zi = 0:

Then, sincez0 is an algebraic number,k must be a transcendental number, contra-

dicting the assumption that k is an integer. Thus no derivatives off (x) vanish for

x = k� , k 2 Z0.

The extension to powers off (x) is straightforward. The non-vanishing terms

in
dn

dxn
[f (x)]m will consist entirely of �nite products of derivatives of f (x), again

resulting in a polynomial in
1

k�
which cannot vanish fork 2 Z0.

2

This, of course, implies that then-th derivative of [sinc (x)]m is non-vanishing for

x =
k
�

, k 2 Z0, n � m.


